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3

7 August 20254

SUMMARY5

Inferring the spatio-temporal distribution of slip during earthquakes remains a significant chal-6

lenge due to the high dimensionality and ill-posed nature of the inverse problem. As a result,7

finite-source inversions typically rely on simplified assumptions. Moreover, in the absence8

of ground-truth measurements, the performance of inversion methods can only be evaluated9

through synthetic tests. Laboratory earthquakes offer a valuable alternative by providing “sim-10

ulated real data” and ground truth observations under controlled conditions, enabling more11

reliable evaluation of source inversion procedures. In this study, we present static and quasi-12

static slip inversion results from data recorded during laboratory earthquakes. Each event is13

instrumented with 20 accelerometers along the fault, and the recorded acceleration data are14

used to invert for the slip history. We consider two different types of Green’s functions (GF):15

simplistic GF assuming a homogeneous elastic half-space and realistic GF computed by finite16

element modeling of the experimental setup. The inversion results are then compared to direct17

observations of fault slip and rupture velocity obtained independently during the experiments.18

Our results show that, regardless of the GF used, the inversions fit well the data and result in19

small formal uncertainties of model parameters. However, only the inversion with realistic GF20

yields slip distributions consistent with the true fault slip measurements and successfully re-21

covers the distribution of rupture velocity along the fault. These findings emphasize the critical22

role of GF selection in accurately resolving slip dynamics and highlight an important distinc-23
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tion in Bayesian inversion: while posterior uncertainty quantification is essential, it does not24

guarantee accuracy, especially if forward modeling uncertainties are not properly accounted25

for. Thus, confidence in inversion results must be paired with careful modeling choices to26

ensure physical reliability.27

0.1 Key Points28

• Green’s function calculation plays an important role in slip inversion.29

• Good data fitting and small uncertainty do not necessarily guarantee the accuracy in30

inverted results.31

• Rupture velocity can be recovered in the laboratory with proper Green’s functions and32

sufficiently dense data.33

Key words: Fault-Slip Distribution Inversion, Laboratory Earthquakes, Strike-Slip Earth-34

quakes, Bayesian Approach, Markov Chain Monte Carlo, Source Time Function35

1 INTRODUCTION36

Estimating the spatial and temporal evolution of slip during earthquakes is essential to understand37

the physics that controls the seismic cycle (Avouac, 2015; Mai et al., 2016; Duputel, 2022). The38

behavior of faults is strongly influenced by their complex structure and interactions with the sur-39

rounding environment. Faults are not smooth or linear but rather rough, segmented, and intricate40

(Ben-Zion and Sammis, 2003), which affects their frictional properties (Scholz, 2002) and deter-41

mines whether slip is seismic or aseismic (Sibson, 1989). Moreover, faults are not isolated; they42

interact with one another, sometimes triggering sequences of earthquakes presenting different seis-43

mic behaviors (Romanet et al., 2018). Since fault slip occurs at depth, direct in-situ measurements44

are impossible, and estimates of fault slip histories are inferred from remote observations, usually45

recorded at the surface, by solving an inverse problem (Tarantola and Valette, 1982). Therefore,46

our understanding of earthquake physics is limited by the dataset used to invert for slip history, as47

⋆



Geophys. J. Int.: LATEX 2ε Guide for Authors 3

well as the assumptions about the forward problem (Hansen, 1998; Beresnev, 2003; Hartzell et al.,48

2007; Mai et al., 2016).49

In finite-fault inversions, one of the largest sources of uncertainty arises from the inaccuracy of50

the Green’s functions (GF), due to uncertainty about the fault geometry or the medium properties51

(Yagi and Fukahata, 2008; Minson et al., 2013; Duputel et al., 2014, 2015; Ragon et al., 2018;52

Hallo and Gallovič, 2020; Ortega-Culaciati et al., 2021). Additionally, the problem is most often53

ill-posed, meaning multiple models can explain the observations equally well (e.g., Hansen, 1998;54

Clévédé et al., 2004; Wong et al., 2024), making it difficult to infer the true solution. Ill-posedness55

is commonly addressed by solving the inverse problem using regularization, which can result56

in biased results (Gallovič and Zahradnı́k, 2011; Gallovič and Ampuero, 2015; Ortega-Culaciati57

et al., 2021).58

In problems where the solution is non-unique, it is important to explore the range of admissible59

solutions rather than seeking a single best fit. This can be approached through optimization-based60

techniques or probabilistic frameworks. Among these, Bayesian inversion methods estimate the61

posterior probability density function of the model parameters by combining prior knowledge62

with the likelihood of the observations for a given model. In practice, this is done by sampling the63

model parameter space and obtaining multiple solutions that are compatible with the observations64

(e.g., Tarantola, 2005; Minson et al., 2013). Posterior distributions allow for the estimation of pa-65

rameter uncertainties and the identification of the most probable solutions, thereby enhancing the66

reliability of the interpretations derived from the models. However, the quantification of posterior67

model uncertainties does not necessarily guarantee the accuracy of the solution (e.g., Mai et al.,68

2016; Twardzik et al., 2022), especially if modeling assumptions like the Green’s functions are69

inaccurate.70

To address these concerns, synthetic tests are usually employed (e.g., Graves and Wald, 2001;71

Okamoto and Takenaka, 2009; Duputel et al., 2014; Langer et al., 2022; Hallo and Gallovič, 2020;72

Ortega-Culaciati et al., 2021). These studies note that good data fitting with an imperfect Green’s73

function does not necessarily guarantee an accurate solution. In some synthetic tests, this is ex-74

posed by generating data using a prescribed (ground-truth) source and a prescribed GF, while75
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doing the source inversion assuming a different GF. While these approaches provide useful in-76

formation on the capabilities and limitations of the source inversion procedure, they typically77

rely on overly simplified source models. Laboratory earthquakes provide a valuable alternative to78

synthetic tests because they exhibit greater complexity and variability in rupture behavior, which79

better reflects the diversity seen in natural earthquakes. At the same time, laboratory experiments80

are conducted in a well-known and controlled medium, they reduce the epistemic uncertainties81

such as fault geometry and material properties, which affect GF calculations (Okamoto and Tak-82

enaka, 2009; Langer et al., 2022) and inferred slip models (Yagi and Fukahata, 2008; Minson83

et al., 2013; Duputel et al., 2014; Ragon et al., 2018). Despite these major advantages offered by84

studying laboratory earthquakes, attempts to apply source inversion methods to experimental data85

remain limited (Dublanchet et al., 2024).86

In this paper, we study the ability to retrieve the spatio-temporal slip of laboratory earthquakes87

using acceleration time series recorded by sensors located along the fault. This is done within88

a Bayesian source inversion framework, which provides not just one solution but an ensemble89

of solutions enabling us to evaluate the uncertainty of the retrieved model parameters. First, we90

examine the inverse problem of retrieving the final slip distribution, hereafter called static slip91

inversion. In particular, we investigate how the choice of GF affects the reliability of the inferred92

slip distribution. To this end, we compare two different GF formulations: a simple GF based on93

analytical solutions for a homogeneous half-space medium (Okada, 1992) and a realistic GF based94

on numerical finite element modeling (COMSOL, Inc., 2024) of the experimental setup. Second,95

we investigate our ability to recover the rupture front velocity by inverting for the spatio-temporal96

distribution of slip, hereafter called quasi-static slip inversion.97

2 EXPERIMENTAL PROTOCOL AND RESULTS98

2.1 Experimental Setup99

Experiments were conducted using the biaxial apparatus Crakdyn, housed at the Géoazur labora-100

tory in Valbonne, France. The experimental fault is the contact surface between two rectangular101
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Figure 1. a) Experimental setup. The contact surface between two PMMA plates form an experimental fault

loaded in a biaxial apparatus. A normal load is applied via three independently-controlled vertical pistons,

FN1 ,FN2 , and FN3 . A shear load is applied via a horizontal piston, FS. Accelerometers and optical gap

sensors are placed along the fault. A high-speed camera (not pictured) triggered by a piezoelectric sensor

is used to track the rupture front. (b, c) Loading histories in two experiments: uncalibrated readings of the

load cells used to record the applied normal loads (green) and the shear load (purple). (b) The normal and

shear loads are increased in a step-wise manner until the fault is near criticality. Then, one normal piston

is unloaded, triggering a dynamic event. Macroscopic stress drop occurs only in the case with the lowest

nominal stress (highest initial friction coefficient), indicating that the lack of normal stress barrier allows for

complete rupture propagation (see Fryer et al., 2024). (c) Same procedure as (b), except a barrier is created

by further increasing the normal load after criticality is initially reached.

polymethyl methacrylate (PMMA) blocks, measuring 40 × 10 × 1 cm3 and 45 × 10 × 1.8 cm3,102

respectively. The dimensions of the fault are 40× 1 cm2 (Figure 1(a)).103

A normal force, FN, was applied using three independently-controlled vertical pistons (FN1 ,104

FN2 , and FN3), while a shear force, F s, was applied via a single horizontal piston. Each piston105

was equipped with a dedicated load cell recording at 500 Hz. Both normal and shear forces were106

manually regulated using Enerpac hydraulic pumps capable of achieving oil pressures up to 700107
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bar. Loading was applied incrementally in 30-bar steps, increasing both the nominal normal stress,108

σ0, and shear stress, τ , on the fault (Figure 1(b,c)). The loading phase terminated when σ0 reached109

120, 130, 140 or 150 bar, depending on the experiment, while τ reached 190 bar. Hence, the110

initial strength conditions of the fault vary as a function of nominal normal stress, such that as111

σ0 increases, the initial friction coefficient, f0, decreases. Here, “nominal stress” refers to the112

gauge pressure readings from the hydraulic system and does not directly correspond to the local or113

average stress along the fault interface. The load cell data provide a more accurate representation114

of average stress. Rupture was initiated by fully unloading the piston FN3 (Figure 1(b,c)).115

During rupture, particle accelerations were recorded using twenty Brüel & Kjær type 8309116

accelerometers with a corner frequency of 56 kHz. These sensors recorded continuously at 2 MHz117

during the unloading phase. Thirteen accelerometers were oriented horizontally and seven verti-118

cally, positioned approximately 1 cm from the fault to preferentially measure fault-parallel and119

fault-perpendicular accelerations, respectively. Fault slip was measured using ten Philtec D100-120

E2H2PQT5 optical gap sensors placed across the fault. These sensors, with a 500 kHz cutoff121

frequency and a resolution of 0.4 microns, are capable of detecting slip up to 0.5 mm. Sampling122

was performed continuously at 2 MHz.123

Dynamic rupture propagation was visualized using three high-intensity light sources to illu-124

minate the sample. Transmitted light was recorded by a Phantom TMX 6410 high-speed camera,125

with cross-polarization achieved using two linear polarizing filters; one between the light sources126

and the sample and one between the sample and the camera. The camera was triggered via an127

oscilloscope connected to a piezoelectric sensor mounted on the sample. Images were captured at128

500 kHz with a spatial resolution of 1280×32 pixels, corresponding to a pixel size of 312 microns.129

Because PMMA is birefringent, variations in transmitted light intensity correspond to changes in130

local stress, allowing for real-time tracking of rupture evolution using polarized imaging (Rosakis131

et al., 1999; Nielsen et al., 2010; Schubnel et al., 2011; Latour et al., 2013; Latour et al., 2024).132
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Figure 2. Results of an experiment with σ0 = 140 bar. (a) Blue curves: time evolution of slip recorded by

gap sensors; each trace is shifted to the sensor position. Red lines: gap sensors that were not operational

during the experiment. Background gray scale: videogram showing the rupture propagation. (b) Green:

fault-parallel acceleration. Orange: fault-perpendicular acceleration. Each trace is shifted to the sensor posi-

tion. (c) Green: fault-parallel displacement (obtained by integrating twice the acceleration records). Orange:

fault-perpendicular displacement. t0: slip onset; ts: static end time. Gray shaded bands near t0 and ts indi-

cate receiver noise and measurement error, respectively, used to obtain data covariance.

2.2 Data Processing133

Optical gap sensors were calibrated such that a 5V output corresponded to the maximum displace-134

ment specified by the manufacturer. The number of operational gap sensors might change due135

to their sensitivity to alignment: some sensors may rotate or detach from the mounting surface136

during the experiment. Accelerometers were individually calibrated by Brüel & Kjær, enabling137

direct voltage-to-acceleration conversion. Displacement time series were obtained by double inte-138

gration of the acceleration signals. For high-speed imaging, the grayscale intensity of each pixel139

(ranging from black to white) reflects variations in transmitted light, which in turn relate to lo-140

cal stress changes (Figure 2). A horizontal line of pixels close to the fault was extracted for 1D141

spatial analysis. The mean grayscale value over the first 20 frames was used as a reference. As142

rupture propagated, evolving stress states altered pixel intensities, which were then compared to143

the reference to generate videograms illustrating rupture dynamics (e.g., Figure 2).144
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Table 1. Initial strength conditions

σ0 f0
fs

=
τ

3σ0fs

120 0.85

130 0.80

140 0.75

150 0.70

2.3 Experimental Results145

We consider four experiments with different applied σ0, previously described in Fryer et al. (2024).146

In all these experiments, dynamic rupture nucleated near the location of the unloaded piston (FN3 ,147

in Figure 1). As all experiments were conducted under the same nominal shear stress of 190148

bar, differences in rupture behavior can be attributed to variations in nominal normal stress which149

modify the initial fault criticality. The ratio of initial friction coefficient to initial sliding coefficient,150

f0/fs, provides a normalized measure of how close the initial condition lies from the peak strength151

of the fault.152

As σ0 increases, the ratio f0/fs decreases in Table 1, indicating that the fault is progressively153

farther from its peak strength. Load cell data show that events with higher-f0, (σ0 = 120 and154

130 bar) exhibited clear macroscopic stress drops, whereas events with lower-f0 (σ0 = 140 and155

150 bar) did not (Figure 1(b,c)). Videogram analysis (Figure 3) revealed that higher-f0 events156

propagated across the entire fault, indicating full rupture, while lower-f0 events arrested mid-fault.157

Moreover, rupture velocities are slower for lower-f0, even in events that reached the fault’s end.158

The physical explanations of such changes in rupture properties were discussed in Fryer et al.159

(2024).160

The time series of true slip by the operational gap sensors, confirm that slip only occurred161

at locations traversed by the rupture front (Figure 2(a)). Acceleration amplitudes decreased from162

right to left, consistent with the direction of rupture propagation (Figure 2(b)). Displacements163

derived from acceleration data served as input for subsequent slip inversion analyses (Figure 2(c)).164
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Figure 3. Local displacements (green) obtained by integrating acceleration signals that is placed in the

receiver locations along the fault.: (a) σ0 = 120 bar, (b) σ0 = 130 bar, (c) σ0 = 140 bar, (d) σ0 = 150 bar.

The photoelasticity images in the background illustrate the evolution of rupture fronts.

3 RETRIEVING SLIP HISTORY FROM LABORATORY DISPLACEMENT DATA165

Three ingredients are required to obtain the slip history during laboratory earthquakes: (1) obser-166

vations of the rupture process, (2) a forward model that predicts observations given a prescribed167

source, and (3) a procedure to search for models that generate predictions compatible with our168

observations. In this section, we describe our choices and settings for these three ingredients.169

3.1 Observed Data170

To infer the laboratory earthquake rupture process, we extract observations from the accelerometer171

data. These sensors record the motion of the PMMA block along two components: fault-parallel172

and fault-perpendicular (see Figure 2(c)). We double-integrate the acceleration time series to ob-173

tain the displacement time series. The onset time, t0 in Figure 2(c), is manually selected just before174

the initiation of slip. The end time of the time series, or static time ts, is also manually chosen as175

the moment when the displacement begins to plateau across all receivers. The values of ts in Fig-176

ure 2(c) for the four experiments are 1.2, 1.3, 1.2, and 1.2 msec, respectively.177

For the static inversion, that is when we aim to obtain only the final spatial slip distribution,178

the observations dobs are defined as the total displacement cumulated at each receiver between t0179

and ts, such that dobs = u(ts) − u(t0), where u is the measured displacement (see Figure 2(c)).180

The number of data points corresponds to the number of operational accelerometers, and varies181

slightly between experiments due to occasional sensor failures: 18, 19, 18, and 19 operational182

accelerometers for the four experiments.183
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For the quasi-static slip inversion, that is, when we aim to obtain the spatio-temporal evolution184

of slip, the observations dobs are the displacement time series at each receiver. We downsample the185

time series by a factor of 100 for computational efficiency. The resulting time series used as data186

are shown as black dots in Figure 2(c). The total number of observations is the number of receivers187

multiplied by the number of retained time steps, resulting in data dimensions of:188

18× 25, 19× 27, 18× 25, 19× 25

for the four experiments as σ0 increases, respectively.189

3.2 Forward Model: Computing the Green’s Function of the Medium190

Both for static and quasi-static slip inversions, we assume a linear relation between the model191

parameters m and the predictions dpred, consistent with linear elasticity:192

dpred = Gm, (1)

where the matrix G collects the Green’s functions describing the elastic response of the medium to193

elementary sources. To make this computation tractable, we discretize the model in both space and194

time. For spatial discretization, we simply subdivide the fault into a finite number of rectangular195

subfaults, where the slip distribution is assumed uniform for GOk and tapered uniform for GCom.196

The tapered nature of GCom will be discussed later in this section.197

For the time discretization, we use the multi-time-windows method (Olson and Apsel, 1982;198

Hartzell and Heaton, 1983), in which slip can only occur within specific time intervals, each with199

a fixed duration. During each of these intervals, we describe the slip rate by a triangular basis200

function, as illustrated in Figure 4. By combining multiple basis functions, each delayed by its201

half-duration and properly weighted, we define the complete slip-rate function with the same time202

step as the dataset. We enforce positivity of the slip rate coefficients as a prior during sampling203

(details provided in Section 3.3). The time integral of such a slip-rate function yields a slip function204

that increases monotonically to the final slip value.205

The optimal number of parameters is obtained by applying the Bayesian Information Criterion206

(see Section A2). The resulting number of unknown parameters is 10 for the static inversion (slip207
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Figure 4. Parametrization of the source inversion problems. For spatial parametrization, the main fault is

subdivided along strike into 10 rectangular subfaults (colored from purple to green). Each subfault is 4× 1

cm² and has uniform slip. For time discretization, 8 triangular time basis functions for slip rate are defined

in each subfault. The coefficient multiplying each time basis function, W (t), is the contribution of the

corresponding time interval to the total slip rate function.

amplitude of 10 subfaults) and 80 for the quasi-static inversion (8 temporal basis function scaling208

coefficients for each of the 10 subfaults), as shown in Figure A2. Thus, we have fewer model209

parameters (10 for static, 80 for quasi-static) than the number of data points (≈ 20 for static,210

≈ 500 for quasi-static), resulting in an over-determined system.211

Green’s functions are highly sensitive to the material properties and geometry of the medium,212

which are often heterogeneous and not fully constrained (e.g., Okamoto and Takenaka, 2009;213

Duputel et al., 2014; Langer et al., 2022). In addition, there are multiple ways to compute the214

GF, each based on different assumptions. While each has theoretical advantages and limitations,215

the choice of GF can introduce systematic biases into inversion results (Gallovič and Ampuero,216

2015; Mai et al., 2016). Therefore, selecting an appropriate formulation is critical but not always217

straightforward. In our case, we have a very good knowledge of the medium properties and the fault218
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Figure 5. Fault-parallel (a, b) and fault-perpendicular (d, e) displacements calculated for unit slip applied

to five different 4 × 1 cm² rectangular subfaults, using (a, d) the displacement response by Okada, DO,

and (b, e) the displacement response by COMSOL simulations, DC. (c, f) Relative differences DO−DC
|DC| for

fault-parallel and fault-perpendicular displacements, respectively.

geometry. Therefore, we can focus on the differences that arise when we use a different formulation219

to calculate the Green’s functions. We compare two methods to compute displacements due to fault220

slip that differ in how they treat boundary conditions and medium properties.221

In both GF approaches we adopt the same values for fault geometry and material properties,222

which are well constrained. The fault is predefined, with strike and dip angles set to 90◦ for all223

subfaults. While the rake angle may vary slightly, we assume a constant rake of 180◦, consistent224

with the right-lateral strike-slip motion inferred from the orientation of the accelerometer data. The225
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Table 2. Material Properties of PMMA

Parameter Value Unit

vP 2700 m/s

vS 1345 m/s

ρ 1100 kg/m3

µ ρ · v2s Pa

λ ρ · v2p − 2ρ · v2s Pa

medium is composed of PMMA, which behaves as a homogeneous, isotropic, and linear elastic226

material under our experimental conditions. The P-wave velocity, vP , S-wave velocity, vS , and227

density, ρ, have uniform values given in Table 2, from which we derive the Lamé parameters µ228

and λ.229

The first approach, GOk, uses the analytical solution by Okada (1992) for the displacement230

field resulting from uniform slip on a rectangular patch (a rectangular dislocation) within a homo-231

geneous elastic half-space.232

The second approach, GCom, involves finite element simulations using the software COM-233

SOL Multiphysics (COMSOL, Inc., 2024) and incorporating realistic features of the geometry234

and boundary conditions of the experimental setup (see Section A1 for details). For each subfault,235

a single simulation is performed by prescribing slip with an approximately uniform spatial slip dis-236

tribution. To suppress boundary singularities, a symmetric half-cosine taper is applied along the237

two cross-strike edges of the rectangular subfaults. This ensures that the slip smoothly increases238

from zero to the prescribed uniform value and then decreases back to zero within a narrow margin239

of 0.01 cm in each subfault. A heterogeneous stress loading is considered in these simulations,240

with initial stress values listed in Table 3, to make sure the applied boundary conditions are mean-241

ingful. These values do not affect the result, as the Green’s function represents the displacement242

field change resulting solely from fault slip.243

The displacements resulting from the two GF approaches differ significantly, as illustrated in244

Figure 5. The Okada solution produces nearly identical displacements for all subfaults, up to a lat-245

eral shift. This spatial invariance is a consequence of the idealized assumptions of a homogeneous246
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Table 3. Initial Stress Conditions for GF Calculation in Comsol

The Force Variable on Piston Applied Stress Value

FN1 120 bar

FN2 120 bar

FN3 0 bar

FS 190 bar

elastic half-space. In contrast, the COMSOL solution exhibits notable spatial variability as a func-247

tion of subfault location. This variation primarily arises from the presence of boundaries on the left248

and right sides of the experimental setup, and from differences in the thicknesses of the upper and249

lower PMMA blocks. Although the difference between the two GF displacements is minimal at250

very close distance to any given subfault, it increases substantially with distance from the source251

(Figure 5c, f). These results illustrate the strong sensitivity of Green’s functions to assumptions252

about geometry and boundary conditions, emphasizing the need for careful modeling choices.253

3.3 Bayesian Approach254

We perform our inversions using a Bayesian framework, in which the objective is to estimate the255

post-PDF of the slip model parameters, m, conditioned on the observed displacement data, dobs.256

This relationship follows directly from Bayes’ theorem:257

p(m | dobs) ∝ p(m) p(dobs | m), (2)

where the prior distribution p(m) is uniform: U(−10−4, 500) µm for the final slip in each sub-258

fault. The upper bound for slip is set to 500 µm, approximately five times the maximum observed259

fault-parallel displacement. The lower bound is slightly negative, because allowing a small nega-260

tive range avoids this boundary effect and enables more efficient exploration of models with slip261

amplitudes close to zero. The likelihood function p(dobs | m) is the probability that the observa-262

tions dobs are compatible with the model m. This can be quantified by comparing the observations263

with the model’s predictions while accounting for the uncertainties in the observations. We adopt264

a Laplacian distribution for the observation uncertainties:265
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p(dobs | m) =
N∏
i=1

1√
2Cd

i
exp

(
−

√
2√

Cd
i

∣∣∣d obs
i − d pred

i

∣∣∣) , (3)

where |·| denotes the L1 norm, and Cd
i is the square of the standard deviation of the uncertainty on266

the data derived from the i-th receiver. As explained in Minson and Lee (2014), this is equivalent267

to adopting a cost function based on the L1 norm in optimization problems.268

The data covariance Cd represents the uncertainty in the measured static displacement. To269

calculate this, we determine the variance of the displacement data in two windows of 100 data270

points, one immediately after t0 (i.e., all data points until t1 in the raw displacement data) and the271

other one immediately before and after ts. These windows correspond to the shaded gray regions272

in Figure 2(c). The former reflects the influence of background noise, whereas the latter accounts273

for measurement errors associated with identifying the final displacement. The two variances are274

then combined to represent the uncertainty of static displacement at each receiver.275

We sample the posterior distribution by the Metropolis algorithm (Hastings, 1970), which is276

a Markov Chain Monte Carlo (MCMC) method. This algorithm generates a sequence of samples277

by proposing candidate models, then accepting or rejecting them through a criterion based on278

the posterior probability. Over time, the sequence converges to the target distribution, allowing279

us to approximate the Bayesian solution effectively. We implement a straightforward Metropolis280

sampler (Duputel, 2024).281

4 INVERSION RESULTS282

4.1 Static Inversion: Comparison Between Okada- and COMSOL-Based Green’s283

Functions284

In this section, we compare the static slip inversion results using the two Green’s functions formu-285

lations, GOk and GCom, introduced in Section 3.2. We run a static inversion for each experiment.286

However, only the experiments conducted at σ0 = 140 bars offered the possibility to confront287

our inversion results with the direct measurements of the fault slip recorded by the optical gap288

sensors. For the remaining experiments, the optical-gap sensors could not provide reliable slip289
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measurements. During those runs, the laser beams were imperfectly aligned with their mirrors,290

leading to signal saturation and, ultimately, a faulty laser calibration. Because the resulting gap-291

sensor data are not trustworthy, we restrict the comparison between inversion results and direct292

slip observations to the experiment performed at σ0 = 140 bars.293

To mitigate sensitivity to the selected initial model, we run 100 independent MCMC chains,294

each initialized with a random model drawn from the prior distribution. Each chain consists of 105295

steps and yields an acceptance rate of approximately 0.25 (Gelman et al., 1997). The convergence296

times depend on the choice of Green’s functions, thus we have a different burn-in phase for each297

case. When using GOk, the first 20% of each chain is discarded as burn-in. When using GCom, the298

burn-in phase is 40%. We also apply thinning by retaining only every 25th sample in each chain299

to promote independence between samples and to reduce the storage requirement. This results in300

8 · 104 samples per chain and 2 · 106 slip models in total.301

Figure 6(a,b) shows a comparison of the data fit when using GOk and GCom. We show the302

average of the predictions obtained from a set of randomly sampled slip models after the burning303

phase. Regardless of the Green’s functions used, the inversions fit the data well (except for the304

perpendicular component at the receiver located at x = 33 cm, which is underestimated by both305

inversions). The Root Mean Square Error (RMSE) is 2.86 and 3.66 µm for the GCom and GOk306

predictions, respectively, while the noise level of the observed data (standard deviation) is 0.69 µm.307

This indicates that both predictions are above the noise level, but GCom fits the data significantly308

better.309

Figure 6(c,d) shows the average slip profile and the uncertainties in the slip amplitude derived310

from the posterior PDF for both inversions. Comparing the results with the ground truth reveals311

that the COMSOL-based inversion better captures the true slip profile, while the Okada-based312

result deviates substantially from it. Furthermore, near x = 33 cm, where the model fit is poor,313

the COMSOL-based results show increased uncertainty whereas the Okada-based results exhibit314

an unrealistically low uncertainty that fails to encompass the true slip value.315

To emphasize the advantage of the sampling algorithm, we compared the analytical and empir-316

ical model covariance matrices for both GCom and GOk (Appendix A3). The empirical covariances317
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Figure 6. Comparison of static slip inversion results and their uncertainties using GCom and GOk. (a, b)

Data fitting results using GCom and GOk for fault-parallel (∇s) and fault-perpendicular (∆s) displacement

components. (c, d) Comparison of inverted slip distributions with ground-truth slip data from gap sensors

(blue and red rectangles indicate operational and non-operational sensors, respectively, so that blue curve is

the ground truth). Black stars denote the centers of subfaults. Light green curves represent linearly interpo-

lated slip distributions between these subfault centers, based on the inverted slip model that is the average

value of all collected slip models after burn-in phase. Gray curves are from 5000 random samples after the

burn-in phase, illustrating uncertainties.

are obtained from the posterior PDFs. The analytical ones are approximations derived under linear-318

Gaussian assumptions. As shown in Figure A3, GCom generally yields lower analytical covariances319

than GOk, whereas GOk exhibits stronger diagonal dominance. Although this might suggest that320

GCom is more ill-posed, it captures the physics of the problem more accurately than GOk. For both321

GF formulations, the empirical model covariances are notably larger than the analytical ones.322

This discrepancy indicates that the linear-Gaussian framework underestimates the true model un-323

certainty, especially when the forward problem exhibits nonlinearities or the posterior distribution324

deviates from a Gaussian distribution.325

4.2 Quasi-Static Inversion Results Using COMSOL-Based Green’s Functions326

To further challenge the robustness of our inversion methodology, we also perform quasi-static327

slip inversions for all four rupture events (Figure 3). Since the static results presented above show328
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a significant deviation of the slip amplitude from ground-truth measurements when using GOk, we329

do the quasi-static slip inversion only using GCom. As outlined in Section 3.2, the model space is330

80-dimensional for quasi-static inversion, which requires more samples for convergence than the331

static case. We run 100 independent MCMC chains with 106 samples each, discarding the first332

20% as burn-in and applying thinning by retaining every 25th sample.333

The spatio-temporal slip distribution is obtained by taking the average of the posterior PDF334

(Figure 7(a–d)). The final time step corresponds to the static slip distribution. As expected, de-335

creasing the initial ratio τ0/σn leads to reduced slip amplitudes and shorter rupture lengths (Fig-336

ure 7(a–d)). Additionally, in the σ0 = 150 bar experiment (Figure 7(d)), slip starts later than in337

other experiments. This delay likely results from a foreshock that prematurely triggered the data338

acquisition system (Figure 3(d)), highlighting the temporal sensitivity of the inversion method.339

To obtain the spatio-temporal evolution of the rupture front from the quasi-static slip inver-340

sion, we define the rupture front by a slip amplitude threshold ranging from 1% to 4% of the341

maximum slip. These fronts are then compared with photoelastic observations (Figure 7(e–h)).342

The method retrieves rupture fronts, rupture velocities, and features such as acceleration and de-343

celeration. Minor timing discrepancies, especially at higher normal stress, arise from the use of344

finite slip thresholds to define rupture fronts: while true rupture onset corresponds to zero slip,345

thresholding introduces slight delays. Despite this, the inversion reliably recovers rupture propa-346

gation, length, and nucleation location, with well-quantified uncertainty bounds.347

For full ruptures (e.g., σ0 = 120 and 130 bar), the inversion accurately captures the observed348

rupture propagation. For partial ruptures (e.g., σ0 = 140 and 150 bar), it correctly identifies rupture349

arrest positions. However, resolution diminishes toward the rupture tip, where data sensitivity is350

inherently lower.351

In the experiments conducted at σ0 = 120 and 130 bar, rupture initiates on the right side of352

the fault, decelerates near x = 17 cm, and subsequently re-accelerates along the left section of the353

fault (Figure 7(i,j)). This asymmetric rupture evolution produces a two-stage slip pattern clearly354

resolved in the inversion results. The first slip phase occurs up to approximately t = 0.75 ms,355

followed by a brief interval of quiescence during which slip evolution stagnates. A second slip356
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Figure 7. (a–d) Mean posterior slip distributions for σ0 = 120, 130, 140, and 150 bar, illustrating slip

evolution over time. (e–h) Comparison of photoelastic rupture fronts (blue dashed lines) with predicted

rupture fronts (green dashed lines) at varying slip thresholds, ranging from 1% to 4% of the maximum

inverted slip value for each event. The time axis in (e–h) is aligned to the triggering time at the acoustic

sensor, not to t0 as in the other subplots. (i–l) Manually identified rupture front locations (blue points) and

predicted rupture front points with associated uncertainty (gray).

phase then starts and persists until around the final time step ts. Thus, the inversion can reveal rup-357

ture complexity, including transient pauses and rupture deceleration, consistent with experimental358

observations (Figure 7(e–f)). The narrow uncertainty bounds around the inferred fronts further359

support the robustness of rupture arrest detection, confirming that the slip did not progress beyond360

the indicated points at the applied thresholds (Figure 7(i-l)).361

Figure 8 presents histograms of spatio-temporal slip evolution for each experiment. In low-362

stress cases (σ0 = 120, 130), the rupture traverses the whole fault, while in high-stress cases363

(σ0 = 140, 150), the rupture arrests mid-fault. Slip variance diminishes with increasing σ0 due to364

the constant upper slip bound of 500 µm across all events.365
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Figure 8. (Bottom) Schematic of the 40 cm fault divided into 10 subfaults (indicated in colors at the bottom).

(a–d) Histograms showing the time evolution of slip in each subfault for the four experiments. In each time

step, blue and red dashed lines indicate the mode and mean of the posterior distribution, respectively.

5 DISCUSSION366

5.1 Reliability and Uncertainty in Static and Quasi-Static Inversion367

The non-uniqueness of slip inversions of natural earthquakes stems from limited knowledge of368

Earth’s internal structure, simplifying assumptions in modeling, and observational noise. While369

synthetic tests are commonly used to explore the consequences of these limitations, they often370

lack realism or may introduce biases due to their reliance on idealized assumptions (Beresnev,371

2003). Laboratory experiments, as in our study, provide a compelling alternative by offering highly372

controlled environments where fault geometry and material properties are well constrained.373

This study addresses a central question: can slip inversions using real laboratory data accu-374

rately recover the true slip distribution, independently recorded during experiments, when the for-375
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Figure 9. (a) Comparison of seismic moment versus squared rupture length L2, derived from camera obser-

vations at each time step. Colored data points represent values up to the moment rate peak (highlighted in

panel b), while gray symbols show subsequent evolution. Marker shapes correspond to different experimen-

tal conditions, as indicated in the legend. Stress drop values at the moment rate peak are also provided in

the legend. The stress drop values, ∆σ = M0/L
2W , computed at the time of the first moment rate peak, are

also listed in the legend, where W denotes the fault width. (b) Moment rate functions for the experiments

labeled in (a), with consistent color coding. Black rectangles highlight the peak moment rate for each event.

(c) Rupture front initiation along the fault, with both time and position zeroed at the rupture initiation point

to allow direct comparison of rupture velocities. Example rupture velocities (0.1–0.92 vs) are annotated for

reference. The absolute rupture positions and timing are shown in Figure 7.

ward model is nearly fully specified? Our results indicate that, with appropriate Green’s functions,376

the spatio-temporal evolution of fault slip can be accurately reconstructed, even when the rupture377

is complex.378

However, the challenge in slip inversion is not only to estimate the slip distribution but also to379

assess the reliability of the inferred model. Although the Bayesian framework offers a powerful380

means to quantify model uncertainty and evaluate model robustness, which is defined here as381

the stability of the posterior distribution with respect to data noise and sampling variability for a382

fixed forward model, it does not inherently ensure that the solution is close enough to the ground383

truth. In particular, the inversion using GCom reliably reproduces the true slip distribution, while384

the inversion using GOk fails to do so despite achieving a similar data fit (Figure 5(a, b)) and385

comparable uncertainty estimates (Figure 5(c, d)).386

This discrepancy arises because the simplistic GOk does not adequately account for the bound-387

ary and initial stress distribution conditions of the problem. As a result, it misrepresents the spatial388
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distribution of slip and cannot reproduce the true slip pattern. In contrast, GCom incorporates re-389

alistic stress and boundary conditions, resulting in slip models that closely match independent390

ground-truth observations. This highlights a common but critical pitfall in inversion: inadequate391

forward models can yield biased yet overconfident solutions, a phenomenon we refer to as “confi-392

dence without accuracy”. Our laboratory setting, in which forward modeling is entirely decoupled393

from data generation and the ground truth is independently measured, allows us to unambiguously394

expose this issue.395

While previous studies have proposed methods to account for uncertainties in Green’s func-396

tions, they have largely focused on variability in Earth material properties (Duputel et al., 2014;397

Hallo and Gallovič, 2016; Caballero et al., 2023), uncertainties in fault geometry (Ragon et al.,398

2018), or model parameterization choices (Beresnev, 2023). In contrast, our work specifically ad-399

dresses how the treatment of geometry and boundary conditions during the computation of Green’s400

functions can impact the inferred slip distributions. Importantly, while the geometry of the fault401

can be uncertain and has been rigorously explored in prior work (Ragon et al., 2018), the boundary402

conditions at the Earth’s surface are not uncertain: the free surface is a well-constrained physical403

reality. However, it is often neglected or simplified in Green’s function formulations. Our results404

demonstrate that such simplifications, especially omitting the effects of the free surface or exter-405

nal boundaries, can introduce systematic modeling biases. This source of epistemic uncertainty is406

rarely quantified or even acknowledged.407

Although formally capturing this type of modeling uncertainty remains challenging, some408

studies have implicitly addressed it by comparing inversion results obtained under differing Green’s409

function assumptions. For instance, Wong et al. (2024) analyzed 32 published models of the 2011410

Tohoku earthquake to extract robust slip features, while Twardzik et al. (2012) examined 12 inver-411

sions of the 2004 Parkfield earthquake and averaged them to infer stable rupture characteristics.412

These ensemble-based approaches offer a practical path toward quantifying uncertainty not only413

from data, noise, or simplifications of subsurface structure, but also from the modeling choices414

made in Green’s function construction. The effects of these choices are often excluded from formal415

uncertainty quantifications but can nonetheless critically influence the inversion results. Nonethe-416
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less, it remains essential to validate inversion results using independent constraints not employed417

in the inversion itself (Das and Kostrov, 1990). These external benchmarks offer a practical path418

for assessing the physical plausibility of inferred slip models and identifying solutions that are419

most consistent with reality.420

Since a ground truth is not available for real earthquakes, it is not possible to directly validate421

our results. Traditionally, discrepancies between different inversion results have been viewed as422

problematic, reflecting uncertainty about which solution is correct. However, especially in light of423

the realization that the Bayesian framework (for one inversion with a given GF) may not provide424

a fully reliable estimate of uncertainty, these differences in the literature can be reinterpreted as425

useful indicators. From this perspective, variety of published slip models may not necessarily be426

viewed as a disadvantage. Rather, the diversity of models can serve as a transparent and practical427

indicator of the uncertainty and reliability of inferred results.428

5.2 Implications for Natural Earthquakes429

The spatio-temporal distribution of slip provides a kinematic description of earthquake rupture,430

governing the resulting stress changes, energy release, and seismic moment. Consequently, un-431

certainties or biases in inverted slip distributions directly propagate into estimates of key source432

parameters, and can thereby influence broader interpretations of earthquake mechanics.433

In our laboratory study, we observe a pronounced dependence of the inferred seismic moment434

on the choice of GF. As shown in Figure A4, the seismic moment predicted using GOk is ap-435

proximately three times larger than that obtained using GCom, despite both inversions achieving436

comparable data fits and posterior uncertainty spreads. This discrepancy illustrates that modeling437

assumptions embedded in the GF can dominate the uncertainty budget, a conclusion that echoes438

findings by Yagi and Fukahata (2008); Duputel et al. (2014); Hallo and Gallovič (2020), who em-439

phasized that GF mischaracterization often outweighs data noise as a leading source of epistemic440

uncertainty in finite-fault inversion.441

This sensitivity to modeling uncertainties has downstream implications. Since the static stress442

drop is often estimated via ∆σ ≈ M0/L
3 for a circular crack of radius L, even moderate biases443
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in M0 can result in significant errors in stress drop for a fixed rupture length L. Such variability444

may account for part of the scatter in reported stress drops across studies (Cotton et al., 2013;445

Courboulex et al., 2016), particularly when differing simplification assumptions about medium446

properties are made to compute GF. These findings underscore the importance of carefully vali-447

dating GF selection when comparing source parameters across different events.448

Beyond scalar estimates like moment and stress drop, our inversions resolve detailed rupture449

kinematics. Note that the quasi-static GF approach used in this study neglects elastodynamic ef-450

fects such as wave propagation. Despite this simplification, it performs remarkably well in recover-451

ing rupture kinematics, including rupture fronts, velocities, and arrest points, in strong agreement452

with independent photoelastic observations (Figure 7). Our results suggest that the validity of the453

quasi-static approximation stems primarily from the nature of the laboratory setting. Ruptures454

propagate at sub-Rayleigh speeds, and the sensors are located in the near field, where static and455

low-frequency deformation dominate the measured signal. Moreover, the PMMA material used456

in the experiments exhibits relatively high attenuation, which naturally suppresses high-frequency457

wave effects. These conditions reduce the contribution of dynamic wavefields to the observed dis-458

placement, allowing the quasi-static model to capture the essential mechanics of rupture without459

explicitly modeling wave propagation. The high spatial resolution of the accelerometers and their460

proximity to the fault further enhance the effectiveness of the quasi-static inversion. As shown in461

Figure 7(e-l), even fine-scale features like deceleration zones and rupture arrests are consistently462

recovered. Minor timing discrepancies, especially at higher stress levels, are likely attributable463

to slip thresholding effects used to define rupture onset, rather than inversion error. These re-464

sults support a key assertion of Hartzell et al. (2007): dense near-field coverage enables robust465

reconstructions of rupture dynamics when physically consistent assumptions are applied. How-466

ever, this approximation has clear limitations. It cannot account for radiation damping, dynamic467

stress changes ahead of the rupture front, or any frequency-dependent phenomena. These limita-468

tions are particularly relevant for interpreting high-frequency ground motion, estimating off-fault469

damage, or modeling ruptures approaching or outpacing the shear-wave velocity, involving po-470
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tentially strong inertia effects and strong radiated waves that carry a large portion of the rupture471

energy.472

Finally, our inversion procedure provides a direct estimate of the seismic moment for each473

event (Figure 9(a)), which can be used to derive the corresponding moment rate functions (Fig-474

ure 9(b)). Our estimate of Ṁ0 highlights that full-rupture events (e.g., σ0 = 120, 130 bar) display475

longer durations and more complex, multi-stage moment rate evolutions. In contrast, finite-rupture476

events (e.g., σ0 = 140, 150 bar) exhibit shorter and simpler moment rate profiles. Figure 9(a)477

clearly shows that the stress drops at the initial peak of the moment rate, that is proportional to the478

slope of the L2 versus M0 relation, are similar across the dataset. This indicates that the differences479

in rupture initiation in our dataset are not caused by variations in stress drop. In addition, contrary480

to other experimental results (Morad et al., 2025), where the initial slope of the moment rate was481

found to scale with final rupture size, our results show a different trend. The initial slopes of the482

moment-rate functions vary across our 4 experiments. The finite rupture events (σ0 = 140, 150483

bar) terminate at similar rupture lengths, yet their moment-rate functions initiate with different484

slopes. Instead, their maximum moment-rate values correlate with their similar rupture lengths.485

We note that the full rupture lengths events may be limited by the experimental setup rather than486

rupture dynamics, and therefore should not be over-interpreted in terms of final rupture size. The487

key observation in our dataset is that the initial slope of 4 events correlates with their initial rupture488

velocity: as the slope decreases in Figure 9(b), the rupture velocity decreases in Figure 9(c).489

While the limited number of experiments restricts broader generalization, the consistent re-490

lationship between initial moment rate slope and rupture velocity is compelling. It points to a491

potentially scalable approach for estimating rupture kinematics using near-field displacement data492

alone, an especially promising avenue in natural earthquake studies where high-resolution geodetic493

data, dense near-field strong-motion records, or Distributed Acoustic Sensing (DAS) observations494

are available. The framework developed in this study opens the door of a quantitative description495

of the early stage of the seismic rupture in the laboratory.496
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6 CONCLUSION497

We show that static and quasi-static inversion methods are robust tools for imaging fault slip in498

controlled environments with dense near-fault data coverage. Yet, the accuracy of the inversion499

critically depends on the assumptions embedded in the Green’s function formulations, particularly500

those related to boundary conditions and stress heterogeneity, which differ between the Okada and501

COMSOL-based GF. When using realistic Green’s functions, quasi-static inversion methods can502

successfully recover both the slip history and the evolution of the rupture front. We also find that503

the uncertainty quantification provided by Bayesian inversion is only meaningful if the forward504

model accurately reflects the physical system.505

The findings from this laboratory study have important implications for real-world earthquake506

source inversion. In natural settings, key parameters for slip inversion, such as fault geometry507

and material properties, are poorly constrained, which limits the accuracy of any forward model.508

There is a circular dependency: accurate slip inversion requires a reliable GF, but an accurate GF509

requires knowledge of fault geometry and boundary conditions. Our results underscore the value510

of using the most physics-informed and site-specific GF available.511

Our study also illustrates the strong potential of quasi-static inversion to reconstruct the rupture512

history from near-field displacement data alone. With increasingly dense sensor networks, includ-513

ing distributed acoustic sensing (DAS) and low-cost high-rate GPS, there is a growing opportunity514

to track rupture evolution with high resolution, provided the forward modeling is appropriate.515

7 DATA AVAILABILITY516

The data used in this study were published by Fryer et al. (2024). The code used in this study is not517

publicly available at the time of submission, but will be made openly available upon acceptance of518

the manuscript.519
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Figure A1. The geometry and meshgrid for finite element method in Comsol

APPENDIX A:674

A1 Green’s Function Calculation in Comsol675

The geometry is partitioned into 174392 domain elements, with refinement around the source and676

sensors (within 1 cm of the fault plane) to 0.0015 m. The 4 blocks and 4 cylinders (shown in blue677

in Figure A1), used to transfer the loading and smooth the stress field, are modeled using steel,678

which is elastic and characterized by a Young’s modulus of 2e11 Pa and a Poisson’s ratio of 0.27.679

The green regions indicate areas where loading is applied (with uniform pressure, PN1 and PN2680

= 120 bar, PN3 = 0, and PS = 190 bar, as in Table 3). The transparent red regions mark surfaces681

with roller boundary conditions (i.e., displacement in the surface normal direction is fixed to zero,682

while displacement in surface-parallel direction is free). All the other surfaces are treated as free683

surfaces. We utilize a thin layer module (spring material) (Pulvirenti et al., 2021) to model the684

dislocation on the subfaults.685
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Figure A2. BIC analysis for number of subfaults (a) and number of time steps (b).

A2 Model Parametrization686

To determine the granularity of the space-time discretization, we analyzed the Bayesian Informa-687

tion Criterion (BIC), defined as:688

BIC = k ln(n)− 2 ln(L̂) , (A.1)

where k is the number of unknown parameters, n is the number of data points, and L̂ is the689

maximum likelihood value within the model space (Schwarz, 1978).690

We first determine the spatial discretization of the static-slip inversion. We run multiple source691

inversions, with an increasing number of subfaults ranging from 4 to 25. We set the subfault width692

equal to the sample width; thus we restrict the inversion to slip fluctuations along strike but not693

along dip. After each inversion, we calculate the average likelihood. Using the L-curve method694

(Hansen, 1992) we find that 10 subfaults offer the best compromise between data fitting and model695

complexity. Each of these 10 subfaults has a length of 4 cm and a width of 1 cm (Figure 4).696

For the quasi-static slip inversion, we keep the same spatial discretization of 10 subfaults.697

Therefore, we only run the BIC analysis to determine the number of temporal basis functions that698

parameterize the slip rate of each subfault. Based on BIC analysis, we find an optimal value of 8699

temporal basis functions per subfault (Figure A2).700
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Figure A3. The comparison of empirical model covariance matrices from the posterior (for Okada and

Comsol, respectively) and calculated analytically for a Gaussian linear model without prior information

(Tarantola, 2005).

A3 Model Covariance Matrices701

Apart from the inversion process itself, it is possible to analytically calculate the model covariance702

matrix for a given linear forward problem d = Gm assuming Gaussian noise in the data without703

any prior information, such that Cm = (GTC−1
d G)−1, where Cd is the data covariance matrix704

(Tarantola, 2005).705
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Figure A4. Uncertainty distributions of seismic moment M0 centered at their respective means for both

GOk and GCom inversion results.

A4 The Uncertainty of Predicted Seismic Moment706

The seismic moment for the experiment with σ0 = 140 bar is calculated, as follows:707

M0(t) =
10∑
i

µLiWimi(t), (A.2)

where Li, Wi, mi are the length, the width, and inverted total slip amount of the subfault for the708

ith subfault. The time variable t is relevant only for quasi-static results. Figure A4 presents the709

seismic moment computed from static inversion results, i.e., the total coseismic slip values for the710

event with σ0 = 140 bar.711

A5 Moment Rate Function712

We compute Ṁ0(t) numerically by differentiating the cumulative moment M0(t) in Eq. A.2 ob-713

tained from the slip histories of the subfaults.714

This paper has been produced using the Blackwell Scientific Publications GJI LATEX2e class file.715
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