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Abstract

Fluid injections can induce aseismic slip, resulting in stress changes that may propagate
faster than pore pressure diffusion, potentially triggering seismicity at significant distances
from injection wells. Constraining the maximum extent of these aseismic ruptures is thus
important for better delineating the influence zone of injections concerning their seismic
hazard. Here we derive a scaling relation based on rupture physics for the maximum size of
aseismic ruptures, accounting for fluid injections with arbitrary flow rate histories. More-
over, based on mounting evidence that the moment release during these operations is often
predominantly aseismic, we derive a scaling relation for the maximum magnitude of aseismic
slip events. Our theoretical predictions are consistent with observations over a broad spec-
trum of event sizes, from laboratory to real-world cases, indicating that fault-zone storativity,
background stress state, and injected fluid volume are key determinants of the maximum size
and magnitude of injection-induced slow slip events.

1 Introduction

A growing body of observations suggests that a significant part of the deformation induced by
subsurface fluid injections is due to aseismic fault motions [1–11]. This phenomenon, known
as injection-induced aseismic slip, has been known since at least the 1960s when a slow sur-
face fault rupture was causally linked to fluid injection operations of an oil field in Los Angeles
[1]. Since then, an increasing number of observational studies have inferred the occurrence of
slow slip events as a result of industrial fluid injections. For example, in the Brawley geother-
mal field, California, ground- and satellite-based geodetic techniques allowed for the detection
of an injection-induced aseismic slip event [7, 9]. This event was found to precede and likely
trigger a seismic sequence in 2012 [12]. In western Canada, two of the largest aseismic slip
events observed thus far (magnitudes 5.0 and 4.2) occurred in 2017-2018 and were detected
using InSAR measurements of surface deformation [10]. These events were attributed to hy-
draulic fractures possibly intersecting glide planes during the stimulation of an unconventional
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hydrocarbon reservoir [10]. Similarly, InSAR-derived surface deformations allowed for the re-
cent detection of aseismic ruptures in the southern Delaware Basin, Texas [11], likely induced by
wastewater injection operations [13]. These recent geodetic observations, in combination with
mounting evidence for aseismic slip from fluid-injection field experiments [2–6, 8], suggest that
injection-induced slow slip events might be a ubiquitous phenomenon, largely underdetected
over the past decades only due to the lack of geodetic monitoring.

There is increasing recognition of the importance of injection-induced aseismic slip in the
geo-energy industry. For instance, in the development of deep geothermal reservoirs, hydraulic
stimulation techniques are commonly used to reactivate pre-existing fractures in shear. This
process aims to enhance reservoir permeability through the permanent dilation of pre-existing
fractures or the creation of new ones. The occurrence of predominantly aseismic rather than
seismic slip is desirable, as earthquakes of significant magnitude can pose a substantial hazard to
the success of these projects [14, 15]. Injection-induced aseismic slip can be, however, detrimen-
tal in several ways. For example, aseismic slip on fractures intersecting wells can cause casing
shearing [3, 10] and adversely impact well stability [16, 17]. Additionally, in CO2 storage op-
erations, injection-induced aseismic slip could affect the integrity of low–permeability caprocks,
as fault slip may be accompanied by permeability enhancements, increasing the risk of CO2

leakage [18, 19]. Similar concerns may arise in other underground operations such as the storage
of hydrogen and gas. Furthermore, it is well-established that quasi-static stress changes due to
aseismic slip may induce seismic failures on nearby unstable fault patches [2–4, 6, 7]. Moreover,
since aseismic slip can propagate faster than pore pressure diffusion [6, 20, 21], aseismic-slip
stress changes can potentially reach regions much further than the zones affected by the di-
rect increase in pore pressure due to injection, thereby increasing the likelihood of triggering
earthquakes of undesirably large magnitude by perturbing a larger rock volume [12, 21, 22].

Understanding the physical factors controlling the spatial extent of aseismic slip is thus of
great importance to better constrain the influence zone of injection operations concerning seismic
hazards. Recent theoretical and numerical modeling studies have provided, within certain simpli-
fying assumptions, a fundamental mechanistic understanding of how injection-induced aseismic
slip grows in a realistic three-dimensional context and through all its stages, from nucleation
to arrest [23–25]. Estimating the rupture run-out distance of aseismic slip transients remains,
despite these efforts, an unresolved issue, particularly as these prior investigations have focused
only on specific injection protocols [23–25]. Yet the spatiotemporal patterns of injection-induced
aseismic slip growth are anticipated to be strongly influenced by the history of injection flow
rate [23]. On the other hand, a related issue is estimating the maximum magnitude of injection-
induced earthquakes. This quantity plays a crucial role in earthquake hazard assessment and
has been the focus of significant research efforts in recent times [26–36]. A common limitation of
prior research in this area is neglecting the portion of moment release due to aseismic slip, despite
substantial evidence suggesting that aseismic motions may contribute significantly to the total
moment release [1–11], potentially surpassing seismic contributions in some cases [1–6, 8, 10,
37]. Understanding the factors governing aseismic moment release is thus important, and would
constitute a first step toward understanding the physical controls on slip partitioning, that is,
the relative contributions of aseismic and seismic motions to the release of elastic strain energy,
which is crucial for a better understanding of the seismic hazard posed by these operations.

Building upon our previous works [23–25], we develop here an upper-bound model for the
spatial extent and moment release of injection-induced aseismic slip events. Our model notably
accounts for fluid injections that are conducted with an arbitrary history of injection flow rate
including the shut-in stage, thus effectively reproducing aseismic slip events during their entire
life cycle, from nucleation to arrest. Using fracture mechanics theory, scaling analysis, and
numerical simulations, we propose scaling relations for the maximum size and magnitude of
aseismic ruptures which are shown to be consistent with a global compilation of events that vary
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Figure 1: Model schematics. (a) Fluid is injected at a constant or arbitrary volumetric rate
until the shut-in time ts at which the injection is instantaneously stopped. (b) This results in
two distinct stages: a pressurization stage and a depressurization (or shut-in) stage. (c) Details
of the porous fault zone near the fluid source. (d,e,f) Distinct stages of rupture propagation in
our upper-bound model (see panel (b) indicating the corresponding times as yellow circles). (d)
Crack-like rupture phase during the pressurization stage. (e,f) Pulse-like rupture phase during
the depressurization stage: first as a ring-like pulse (panel (e)), after as two moon-shaped pulses
(panel (f)). See the main text for a detailed description of the stages.

in size from cm-scale slip transients monitored in the laboratory to km-scale, geodetically inferred
slow slip events induced by industrial injections. Our results suggest that fault-zone hydro-
mechanical storativity, background stress state, and injected fluid volume are crucial quantities
in determining upper limits for the size and magnitude of aseismic ruptures. Moreover, the total
fluid volume injected by a given operation is shown to be the only operational parameter that
matters in determining the upper bounds in our model, regardless of any other characteristic of
the injection protocol.

2 Results

2.1 Physical model and upper bound rationale

We consider purely aseismic ruptures nucleated by a localized increase of pore-fluid pressure due
to the direct injection of fluids into a porous fault zone of width w (Fig. 1c). For simplicity, we
begin by examining a fluid injection conducted at a constant volumetric rate Q0 over a finite
time ts, followed by a sudden injection stop (Fig. 1a). This results in two distinct stages: a
continuous injection or pressurization stage, in which pore pressure increases everywhere within
the permeable fault zone; and a shut-in or depressurization stage, in which pore pressure decays
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near the injection point (Fig. 1b) while transiently increasing away from it (Fig. 1e). Incor-
porating these two stages into the model allows for examining aseismic ruptures throughout
their entire lifetime, from nucleation to arrest. We consider a planar infinite fault obeying a
slip-weakening friction law with a static (peak) friction coefficient fp, dynamic (residual) fric-
tion coefficient fr, and characteristic slip-weakening distance δc. The decay of friction from the
peak to the residual value can be either linear or exponential [25]. The host rock is considered
purely elastic with the same elastic constants as the fault zone (Fig. 1c). We assume the host
rock to be impermeable at the relevant time scales of the injection. This configuration is mo-
tivated by the permeability structure of fault zones in which a highly-permeable damage zone
is commonly surrounded by a less permeable host rock [38, 39]. Under these assumptions and,
particularly at large times compared to the characteristic time for diffusion of pore pressure
in the direction perpendicular to the fault, w2/α, with α the fault-zone hydraulic diffusivity,
the deformation rate in the fault zone is essentially oedometric (uniaxial along the z-axis) [40].
Fluid flow within the fault zone is then governed by an axisymmetric linear diffusion equation
for the pore pressure field p, ∂p/∂t = α∇2p [41], where the hydraulic diffusivity α = k/Sη, with
k and η the fault permeability and fluid dynamic viscosity respectively, and S is the so-called
oedometric storage coefficient representing the variation of fluid content caused by a unit pore
pressure change under uniaxial strain and constant stress normal to the fault plane [41, 42]. By
neglecting any poroelastic coupling within the fault zone upon the activation of slip, deformation
in the medium is governed by linear elasticity which by virtue of the slow nature of the slip we
are concerned with, is regarded in its quasi-static approximation. Moreover, we assume that
fault slip is concentrated in a principal slip zone modeled as a mathematical plane located at
z = 0 (Fig. 1c). We presented an investigation of this physical model, which can be regarded
as an extension to three dimensions of the two-dimensional plane-strain model of Garagash and
Germanovich [43], in a recent study [25]. Here, our main focus is on the case of ruptures that
are unconditionally stable according to the terminology and regimes presented in [25]. This
condition requires that the background shear stress τ0, which is assumed to be uniform, must
be lower than the in-situ residual fault strength frσ

′
0, where σ′

0 = σ0 − p0, with σ0 and p0 the
uniform background normal stress and pore pressure respectively. τ0 and σ′

0 are thought to be
the result of long-term tectonic processes and thus considered to be constant during the times
scales associated with the injection operation.

In our model, unconditionally stable ruptures evolve always between two similarity solutions
(Fig. 2a and see [25] for further details), one at early times where the fault interface operates
with a constant friction coefficient equal to the peak value fp, and the other one at late times
where the fault interface behaves as if it were governed by a constant friction coefficient equal
to the residual value fr. As shown in Fig. 2a, the constant residual friction solution, which is
the ultimate asymptotic regime of any unconditionally stable rupture, is an upper bound for
the rupture size at any given time during the pressurization stage. In this asymptotic regime,
rupture growth is dictated by a fracture-mechanics energy balance, where the interplay between
driving and resisting forces leads to a scenario in which the fracture energy can be effectively
neglected [25]. For this reason, this upper-bound limiting regime is also referred to as the zero-
fracture-energy solution [25]. During the shut-in stage, a similar upper-bound rationale can be
applied to the case of unconditionally stable ruptures. Assuming the fault slides with a constant
residual friction value across the slipping region (equivalent to neglecting the fracture energy in
the rupture-tip energy balance), this limiting solution would consistently yield a maximum for
the rupture size, as the effect of the fracture energy is always to slow down rupture advancement.
The limiting scenario of constant residual friction serves, therefore, as an effective upper-bound
model for unconditionally stable ruptures from nucleation to arrest. In the following sections, we
explore the consequences of such a limiting condition to provide an upper bound for the evolution
of the rupture size and moment release during and after fluid injection, as well as a theoretical
estimate for the final, maximum size and magnitude of injection-induced slow slip events. While
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Figure 2: Upper bound rationale and amplification factor. (a) Evolution of the ampli-
fication factor λ(t) = R(t)/L(t) for unconditionally stable ruptures in the slip-weakening fault
model (adapted from figure 9 in [25]). R(t) is the rupture radius and L(t) =

√
4αt is the position

of the overpressure front. λr (time-independent) hereafter denoted simply λ, is an upper bound
for the rupture size at any time during continuous injection. (b) Analytical solution (solid black
line) for the amplification factor λ in our upper-bound model. λ depends uniquely on the resid-
ual stress-injection parameter Tr. Blue and red dashed lines correspond to asymptotic limiting
behaviors for marginally pressurized (λ ≪ 1) and nearly unstable (λ ≫ 1) ruptures.

the canonical example of injection at a constant flow rate is used to examine injection-induced
aseismic slip in a relatively comprehensive manner which includes different stages and regimes,
we emphasize in advance that our estimates for the maximum size and magnitude will account
for fluid injections conducted with an arbitrary volumetric rate history (Fig. 1a).

2.2 Dynamics of unconditionally stable ruptures and maximum rupture size

During and after fluid injection, our upper-bound model is governed by a single dimensionless
number (see Methods), the so-called residual stress-injection parameter:

Tr =
∆τr−0

fr∆p∗
, with ∆τr−0 = frσ

′
0 − τ0 and ∆p∗ = Q0η/4πkw. (1)

This dimensionless number systematically emerges in physics-based models of injection-induced
fault slip [20, 23–25, 44]. It quantifies the competition between the two opposite forces that
determine the dynamics of unconditionally-stable ruptures in our upper-bound model. One is
a driving force associated with the sole effect of pore pressure increase due to fluid injection
which continuously reduces fault shear strength, thereby releasing elastic strain energy that
becomes available for rupture growth. Its stress scale is fr∆p∗, where ∆p∗ is the injection
intensity. Injections with faster pressurization are associated with increasing values of ∆p∗
which can occur, for example, due to a higher injection flow rate (Q0) or a lower hydraulic
transmissivity (kw). The other force is of a resisting kind, which in the absence of a local energy
dissipation mechanism such as the fracture energy, corresponds to a non-local consumption of
elastic strain energy associated with the background stress change, ∆τr−0. The latter is defined
as the difference between the in-situ residual fault strength (frσ

′
0) and the initial shear stress (τ0).

The former quantity can be also interpreted as the final shear stress that would act on the slipped
fault patch after the termination of the injection operation and the subsequent dissipation of
overpressure due to the injection. Hence, ∆τr−0 quantifies a change of shear stress between a final
and initial state. The background stress change is strictly positive. This is an essential feature of
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unconditionally stable ruptures. Specifically, the ultimate stability condition: τ0 < frσ
′
0, ensures

the fault stability and the development of quasi-static slip unconditionally in this regime [25,
43]. Intuitively one expects that as the intensity of the injection (∆p∗) increases, the rupture
would propagate faster. Conversely, when the background stress change (∆τr−0) is higher, it
presents greater resistance to rupture growth, consequently slowing down the slip propagation.
Hence, decreasing Tr values will always result in faster aseismic ruptures. This behavior can be
clearly observed in Fig. 2b, where the solution (see Methods) during the pressurization stage
for a circular rupture of radius R(t) is shown. Here, R(t) = λL(t), where λ is the so-called
amplification factor [20], and L(t) =

√
4αt is the classical diffusion length scale, also considered

as the nominal position of the overpressure front (Fig. 1d). λ therefore relates the position of the
overpressure and slip fronts. This analytical circular-rupture solution is strictly valid only when
ν = 0 [23]. Throughout this work, we generally adopt the circular rupture approximation to
derive purely analytical insights. We, nevertheless, quantify the effect of rupture non-circularity
numerically via a boundary-element-based numerical solver (see Methods).

The analytical solution in Fig. 2b provides important insights into the response of our upper-
bound model. During the pressurization stage, the fault response is characterized by two distinct
regimes. When Tr ∼ 10, aseismic ruptures are confined well within the overpressurized region
(λ ≪ 1), a regime known as marginally pressurized because it relates to a scenario in which the
fluid injection provides just the minimum amount of overpressure that is necessary to activate
fault slip [25, 43]. Conversely, when Tr ≪ 1, aseismic ruptures break regions much further
away than the pressurized fault zone (λ ≫ 1). This is the so-called nearly unstable regime [25]
as when ∆τr−0 → 0 the rupture approaches the condition under which it becomes ultimately
unstable. From a practical standpoint and in an upper-bound sense, this is indeed the most
relevant regime as it produces the largest ruptures for a given injection. While operators in geo-
energy applications typically maintain good control over the parameters of the fluid injection,
in-situ conditions such as the stress state acting upon fractures and faults within a reservoir are
subject to significant uncertainties. Given that in-situ conditions largely control the response
of aseismic slip in our model, it seems reasonable to assume under rather generic, generally
uncertain conditions in the rock mass surrounding a given operation, that the nearly unstable
regime provides an upper limit for the size and magnitude of aseismic slip events. Consequently,
our emphasis in this work will predominantly be on exploring this regime. In fact, when λ ≫ 1,
one can derive a relation linking the evolution of the rupture radius to the accumulated injected
fluid volume (V (t)) and in-situ conditions as follows (see Methods):

R(t) = Asitu

√
V (t), with Asitu =

(
fr

2πwS∆τr−0

)1/2

. (2)

This equation is valid not only for injection at a constant flow rate but also for any arbitrary fluid
injection as long as the rupture propagates in crack-like mode during the pressurization stage (see
Methods), so that the fracture-mechanics energy balance, equation (10), remains valid. A crack-
like propagation mode will certainly hold at least in one relevant scenario, wherein overpressure
due to fluid injection increases monotonically everywhere within the sliding region. Hereafter,
to put the term arbitrary in a more specific but still sufficiently general scope, we refer to
injection with monotonically increasing fluid pressure as arbitrary. However, we emphasize that
in our model, a monotonically increasing fluid pressure is only a sufficient (not a necessary and
sufficient) condition for crack-like propagation. Moreover, equation (2) implies that, during the
pressurization stage, the cumulative injected fluid volume V (t) is the only operational parameter
of the injection that matters to estimate an upper bound for the rupture size at a given time t.
Furthermore, the prefactor is exclusively related to in-situ conditions (Asitu).

Upon the stop of the fluid injection (t > ts), our upper-bound model produces ruptures
that transition from crack-like to pulse-like propagation mode (Fig. 1d-f). Indeed, since we
have reduced the upper-bound problem to a fault responding with a constant friction coefficient
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Figure 3: Dynamics of unconditionally stable ruptures, arrest time, and maximum
rupture size. (a) Evolution of fluid- and slip-related fronts, during the entire lifetime of
an injection-induced aseismic slip event, for a case with Tr = 0.15. Front positions F (t) =
R(t), B(t), L(t), P (t) are normalized by the rupture radius at the shut-in time, Rs (see the main
text for a description of the different fronts). (b) Slip distribution for a very nearly unstable
rupture (Tr ≪ 1) at the shut-in and arrest times. δc(t) = fr∆p∗L(t)/µ is the characteristic slip
scale in this regime (see Methods). Slip is further accumulated during the shut-in stage due to
the slip pulse that travels along the fault upon the shut-in of the injection. (c) Upper bound for
the arrest time and (d) maximum rupture run-out distance as a function of the dimensionless
parameter Tr.
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equal to the residual value fr, we inherit essentially all the results obtained recently by Sáez
and Lecampion [24] who extensively investigated the propagation and arrest of post-injection
aseismic slip on a fault with constant friction. In particular, the overpressure drops quickly
near the fluid source upon the stop of the injection while it keeps increasing transiently away
from it (Fig. 1d-e). This latter increase of pore pressure is what further drives the propagation
of aseismic ruptures after shut-in. As shown in Fig. 1e, slip propagates first as a ring-shaped
pulse with a locking front that propagates always faster than the rupture front (Fig. 3a). The
locking front is driven by the continuous depressurization of pore fluids which re-strengthens
the fault. After, and for the more general case of non-circular ruptures, the pulse splits into two
‘moon-shaped’ pulses (Fig. 1f). This ultimate stage is due to the locking front catching up with
the rupture front first in the less elongated side of the slipping region. For the idealized case of
circular ruptures, the moon-shaped pulses are absent due to the axisymmetry property of both
the fluid flow and shear rupture problems. Fig. 3a displays the evolution of the locking front
B(t) and rupture front R(t) for a circular rupture for an exemplifying case with Tr = 0.15. Slip
arrests when the locking front catches the rupture front at the time ta (arrest time or duration of
the slow slip event), resulting in the maximum rupture run-out distance Rmax. Although perhaps
more insightfully, the rupture front stops when it is caught by the so-called pore-pressure back
front P (t) [24] introduced by Parotidis et al. [45]. This latter means that there is no further
increase of pore pressure within the rupture pulse that is available to sustain the propagation
of slip. Moreover, this arrest condition leads to the following analytical relation between the
maximum rupture radius Rmax and the arrest time ta:

Rmax =

[
4αta

(
ta
ts

− 1

)
ln

(
ta

ta − ts

)]1/2
. (3)

In the more practically relevant, nearly unstable regime (Tr ≪ 1), the normalized arrest time
(Fig. 3c) can be estimated via the following numerically-derived asymptotic approximation,
ta/ts ≈ aT −b

r , with a = 0.946876 and b = 1.084361. Moreover, Fig. 3c shows that when ruptures
are marginally pressurized (Tr ∼ 10), the slip pulses arrest almost immediately after the injection
stops. Conversely, when ruptures are nearly unstable (Tr ≪ 1), the upper bound for the arrest
time (ta) is predicted to be several orders of magnitude the injection duration (ts). Rupture
non-circularity has the effect of slightly increasing both the arrest time and maximum rupture
run-out distance Rmax (Figs. 3c-d). Furthermore, the contribution of the shut-in stage to Rmax

is approximately a factor of two at most when ruptures are very nearly unstable (Tr ∼ 0.001,
Fig. 3d). Hence, the order of magnitude of Rmax comes directly from evaluating R(t) in the
analytical solution displayed in Fig 2b at the shut-in time, which in the regime λ ≫ 1 takes
a more insightful expression given by equation (2), which is valid for arbitrary fluid injections.
Using this latter expression, we can calculate the maximum run-out distance when λ ≫ 1 as:

Rmax = SνAsitu

√
Vtot, (4)

where Vtot = V (ts) is the total volume of fluid injected during a given operation, and the
coefficient Sν accounts for the further growth of the rupture during the shut-in stage and the
effect of rupture non-circularity. Sν is a function of Tr and ν and can be simply approximated
by the blue dashed line in Fig. 3d for ν = 0.25.

2.3 Maximum moment release and magnitude

To calculate the moment release, we derive analytical upper bounds for the spatiotemporal
evolution of fault slip during the pressurization stage, for both nearly unstable (λ ≫ 1) and
marginally pressurized (λ ≪ 1) ruptures (see Methods). Notably, the slip distribution of nearly
unstable ruptures is highly concentrated around the injection point due to a boundary layer
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associated with the fluid-injection force at distances r ∼ L(t) (Fig. 3b). Upon integrating the
analytical slip distributions over the rupture surface, the temporal evolution of moment release
is:

M0 ≃

{
16
3 ∆τr−0R

3 for nearly unstable ruptures, λ ≫ 1,
16
9 fr∆p∗R

3 for marginally pressurized ruptures, λ ≪ 1,
(5)

with the temporal dependence of M0 embedded implicitly in R(t) = λL(t) which is known
analytically (Fig. 2b). As expected, the previous asymptotic solutions for M0 match very
closely the full numerical solution (Fig. 4a). The numerical solution helps us to describe the
precise transition between the two end members. We emphasize that the structure of the scaling
for M0 is evidently the one expected for a circular crack (M0 ∝ R3). Yet the pre-factors and
relevant stress scales are specific to the characteristic loading of each regime. For instance, in
the nearly unstable regime (λ ≫ 1), the proper stress scale is the background stress change
(∆τr−0), as opposed to the injection intensity (fr∆p∗) which is the adequate stress scale when
λ ≪ 1. This is because, in the nearly unstable regime, most of the slipping region experiences a
uniform stress variation ∆τr−0 except for a very small region of size ∼ L(t) near the fluid source
which undergoes an additional non-uniform stress change due to the fluid injection. The effect
of the fluid-injection force is indeed in the pre-factor 16/3, which is about two times bigger than
the one of a circular crack with purely uniform stress drop (16/7 when ν = 0.25 [46], and 8/3
when ν = 0 [47]). Moreover, in this regime, we obtain the following expression for the moment
release which is valid for arbitrary fluid injections (see Methods):

M0(t) = Isitu · V (t)3/2, with Isitu =
16

3(2π)3/2
1√

∆τr−0

(
fr
wS

)3/2

. (6)

Equation (6) has the same property as equation (2), that is, the only operational parameter of
the injection controlling the upper bound for the moment release during the pressurization stage
is the cumulative injected fluid volume V (t). Furthermore, the prefactor corresponds as well to
in-situ conditions (Isitu), thus effectively separating contributions to the moment release that
are controllable during an operation (V ) and those that are not (Isitu). Such kind of relation for
the moment release has been previously reported in the literature for the case of regular, fast
earthquakes [27, 28, 30, 32, 35].

Equation (6) shows that a decrease in background stress change (∆τr−0) leads to an increase
in moment release. The reason behind such behavior is simple, lower background stress variations
result in less opposition for the rupture to grow and thus in a higher moment release. For
the same reason, higher values of the residual friction coefficient (fr) also augment M0. On
the other hand, decreasing the product between the fault-zone width and oedometric storage
coefficient (wS), hereafter denominated as fault-zone storativity, also leads to a larger moment
release. The explanation, in this case, is that wS controls the pressurization intensity due
to fluid injection that is experienced on average over the fault pressurized region. A lower
storativity in the fault zone naturally implies a higher fluid pressure to accommodate a fixed
amount of injected volume (see equation (18)). A higher fluid overpressure decreases fault
shear strength therefore increasing the mechanical energy available for rupture growth and the
corresponding moment release. It is important to note that in the marginally pressurized regime
(λ ≪ 1), M0 does not follow an expression as in (6). Indeed, by substituting the expressions
∆p∗ = Q0η/4πkw, R(t) = λ

√
4αt, and V (t) = Q0t into equation (5), one can readily show that

the moment release for an injection at a constant flow rate is given by M0(t) = B · V (t)3/2,

with B = (32/9π)(frη/kw)(λ
3α3/2/Q

1/2
0 ). This implies that in this regime, the moment release

depends on both the current injected volume V (t) (or injection time t) and the injection rate
Q0 (which is also implicitly in λ). More importantly, the in-situ and operational factors cannot
be separated as in (6). This separation is a unique characteristic of nearly unstable ruptures,
associated with the fact that when λ ≫ 1, the effect of the fluid source on rupture propagation is
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Figure 4: Upper-bound model for the moment release. (a) Normalized moment release
during the pressurization stage as a function of the residual stress-injection parameter Tr using
the nearly unstable (red, left axis) and marginally pressurized (blue, right axis) scalings. Black
dashed lines correspond to asymptotic analytical solutions provided in the main text. Solid lines
correspond to numerical solutions. (b) Evolution of the moment release for a nearly unstable
circular rupture (Tr ≪ 1) during and after fluid injection. The moment release increases up to
≈ 3 times the moment release at the shut-in time in this particular case. (c) Shut-in coefficient
Cshut-in = M0(ta)/M0(ts) for a circular rupture as a function of the dimensionless parameter Tr.
Nearly unstable ruptures can experience a moment release increment of up to ≈ 4 times during
the shut-in stage. Conversely, marginally pressurized ruptures (Tr ∼ 10) are characterized by
no increment at all. (d) Non-circularity coefficient Cν as a function of Tr for ν = 0.25. The
numerical simulations suggest that over a wide range of practically relevant cases (0.01 ≤ Tr ≤ 1),
the moment release of a non-circular rupture is about 13.8 percent smaller than the moment
release of a circular rupture (ν = 0) at same Tr.
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entirely described by its equivalent force at distances r ≫ L(t). The magnitude of this equivalent
force is determined only by the injected fluid volume, irrespective of any other detail of the fluid
injection (see Methods, equation (21)).

During the shut-in stage (t > ts), the propagation and ultimate arrest of the aseismic slip
pulses result in a further accumulation of fault slip (Fig. 3b). The depressurization stage thus
increases the final, maximum moment release of the events. Fig. 4b displays the evolution of
this increase for an exemplifying case with Tr = 0.01. We observe that the moment release keeps
growing after shut-in very slowly (over a timescale that is about 100 times the injection duration)
up to reaching (at arrest) nearly three times the moment release at the time the injection stops
(M0(ts)). We quantify this effect in the most general form by defining the shut-in coefficient
Cshut-in, equal to the ratio between the maximum moment release at the time in which a circular
rupture arrest, M0(ta), and the moment release at the shut-in time, M0(ts). By dimensional
analysis, the shut-in coefficient depends only on the residual stress-injection parameter Tr, whose
relation is calculated numerically and displayed in Fig. 4c. We observe that M0(ta) is at most
around 4 times the moment release at the time the injection stops in the more nearly unstable
cases (smallest values of Tr). Conversely, there is virtually no further accumulation of moment
release for marginally pressurized ruptures. We quantify the effect of rupture non-circularity in
a similar way by introducing the coefficient Cν equal to the ratio between the moment release at
the time of arrest for non-circular ruptures (ν ̸= 0), and the same quantity for the circular case
(ν = 0). Again, by dimensional considerations, Cν depends only on Tr for a given ν. This is
shown in Fig. 4d for the particular case of a Poisson’s solid (ν = 0.25, a common approximation
for rocks). We observe that the effect of the Poisson’s ratio is to reduce in about 13.8 percent the
moment release of a non-circular rupture with respect to the one of a circular rupture, for the
same Tr. We find this to be valid over a wide range of practically relevant cases (0.01 ≤ Tr ≤ 1).
With all the previous definitions and calculations, we can finally estimate the maximum moment
release as Mmax

0 = Cν ·Cshut-in ·M0(ts). Notably, in the nearly unstable regime (λ ≫ 1), equation
(6) can be evaluated at the shut-in time, which allows us to arrive at the following expression
valid for arbitrary fluid injections:

Mmax
0 = Cν · Cshut-in · Isitu · V

3/2
tot , (7)

where Vtot = V (ts) is the total volume of fluid injected during a given operation. Equation
(7) has a multiplicative form, thus effectively factorizing contributions from the injected fluid
volume, in-situ conditions, shut-in stage, and rupture non-circularity to the maximum moment
release. Note that both Cshut-in and Cν depend on Tr and thus also on in-situ conditions and
parameters of the injection (equation (1)). However, the in-situ conditions and injection protocol
are for the most part contained in Isitu and Vtot, respectively, which can vary over several orders
of magnitude. On the contrary, the dimensionless coefficients Cshut-in and Cν remain always
of order one. Moreover, we shall keep in mind that these latter two coefficients are, strictly
speaking, defined only for injection at a constant flow rate. Nevertheless, one could crudely
approximate any other kind of injection protocol as Qeq = (1/ts)

∫ ts
0 Q(t)dt for the purpose of

estimating these two coefficients. The previous approximation guarantees that the same amount
of fluid volume is injected over the same injection period ts by both the equivalent constant-
rate source Qeq and the time-varying arbitrary source Q(t). Finally, for marginally pressurized
ruptures (λ ≪ 1), a similar expression for the maximum moment release can be derived as

Mmax
0 = Cν · B · V 3/2

tot (since Cshut-in ≈ 1, Fig. 4c). As already discussed, the in-situ and
operational factors cannot be separated in this regime.

To calculate the maximum magnitude, we follow the definition by Hanks and Kanamori [48]:
Mmax

w = 2/3 · [log10 (Mmax
0 ) − 9.1] (here, in SI units). In the regime that provides the largest

rupture size and moment release for a given injection (λ ≫ 1), equation (7) leads to the following
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estimate for the maximum magnitude:

Mmax
w = log10 (Vtot) +

2

3
[log10 (Isitu) + log10 (Cshut-in) + log10 (Cν)− 9.1] . (8)

Due to the multiplicative form of equation (7), equation (8) takes an additive form that
separates contributions from different factors to the maximum magnitude of injection-induced
slow slip events. Among these factors, rupture non-circularity decreases the magnitude only
by 0.06. The contribution from the shut-in stage is, on the other hand, slightly larger. Since
Cshut-in ≈ 4 at most when ruptures are very nearly unstable (Tr ∼ 0.001), the shut-in stage
may contribute to an increase in the moment magnitude of 0.4 at the maximum. The larger
contributions toMmax

w are by far the ones associated with in-situ conditions and the total injected
fluid volume. For example, a tenfold increase in Vtot gives a magnitude increase of 1.0, while
a tenfold increase in Isitu results in a magnitude growth of approximately 0.67. The relative
contributions from the sub-factors composing Isitu can be further understood by substituting
equation (6) into (8), and then isolating the in-situ term as follows:

(2/3)log10 (Isitu) = log10 (fr)− (1/3)log10 (∆τr−0)− log10 (wS)− 0.3135. (9)

The more significant variations in Mmax
w come clearly from the fault-zone storativity (wS) and

background stress change (∆τr−0), which could vary over several orders of magnitude. For
instance, a variation of three orders of magnitude in ∆τr−0 yields a change of magnitude of
1.0, while the same variation in fault-zone storativity results in a magnitude change of 3.0,
highlighting the potentially strong effect of wS in Mmax

w .

2.4 Fault-zone storativity and injected fluid volume: two key parameters

To test our scaling relations, we compiled and produced a new dataset (Supplementary Materials)
with estimates of aseismic moment release, rupture size, and injected fluid volumes from events
that vary in size from laboratory experiments (centimetric to metric scale ruptures) [49, 50] to
industrial applications (hectometric to kilometric scale ruptures) [3, 4, 10, 21, 51], including in-
situ experiments in shallow natural faults at intermediate scales (metric to decametric ruptures)
[6, 52, 53]. The comparison between this dataset and our expressions for the maximum moment
release (7) (or magnitude (8)) and maximum rupture size (3), are displayed in Figs. 5 and
6 respectively. We focus first on the maximum moment release (Fig. 5). To facilitate the
comparison against the dataset, we introduce in Fig. 5 the factor N = Cν · Cshut-in · Isitu which
encapsulates all effects other than the injected fluid volume, so that equation (7) can be simply

written as Mmax
0 = N · V 3/2

tot . Three different values for N are considered in Fig. 5 which
collectively form an upper bound for the data across the different volume and moment release
scales characterizing the dataset. Considering that Cν ≈ 0.862 and that plausible values for
the coefficient Cshut-in range from 1 to 4, the order of magnitude and units of N are the ones
determined by the in-situ factor (Isitu). This latter, in turn, depends on three parameters: the
residual friction coefficient fr (with a plausible range of 0.4 to 0.8), the background stress change
(∆τr−0), and the fault-zone storativity (wS). The background stress change can be at most equal
to the amount of shear stress that is necessary to activate fault slip before the injection starts,
∆τp−0 = fpσ

′
0 − τ0, in the limiting case in which the weakening of friction is small (fr ≈ fp). Its

minimum value could be, on the other hand, as small (but positive) as possible when the residual
fault strength drops close to the initial shear stress (frσ

′
0 ≈ τ0). This is, as already discussed, the

case that would promote larger ruptures and moment release. ∆τr−0 could therefore reasonably
fluctuate between some MPa and a few kPa. The fault-zone storativity (wS) may similarly
vary over several or potentially many orders of magnitude [54–57]. Estimating this parameter
is quite challenging; however, as anticipated by equation (9), wS could have a strong effect on
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Figure 5: Comparison of our scaling relation for the maximum magnitude Mmax
w

with estimates of moment magnitude from injection-induced slow slip events, as
a function of the total injected fluid volume. We consider three values of the factor N
(solid black lines) which collectively form an upper bound for the data across different volume
and moment release scales. For some events in the dataset, the moment release is estimated
within a range that is represented by a vertical line connecting their maximum and minimum
values (see Supplementary Materials for further details). Gray dashed lines represent McGarr’s
relation [28] for shear moduli of 20 and 30 GPa.
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the maximum magnitude. Hence, we conduct a more intricate analysis of representative values
for wS within our compilation of events.

To do so, we examine the end members of our data points, namely, small-scale laboratory
experiments and industrial-scale fluid injections. Let us first note that in our model, wS can
be written in terms of generally more accessible quantities as kw/αη, where kw is the fault-
zone hydraulic transmissivity, η is the fluid dynamic viscosity, and α is the fault-zone hydraulic
diffusivity. At the centimetric scale composing the smallest aseismic slip events in the dataset,
Passelègue et al. [49] estimated the hydraulic transmissivity of their saw-cut granitic fault
within 10−17 and 2×10−18 m3, and a hydraulic diffusivity from 3×10−5 m2/s to 10−6 m2/s [58],
at confining pressures ranging from 20 to 100 MPa respectively. Considering a water dynamic
viscosity at the room temperature the experiments were conducted, η ∼ 10−3 Pa·s, we estimate
wS to be within 3×10−10 and 2×10−9 m/Pa (assuming that kw and α are positively correlated).
Taking into consideration the aforementioned characteristic range of values for fr and ∆τr−0,
we estimate the maximum value for the in-situ factor that is representative of these laboratory
experiments to be roughly Isitu ∼ 1012 N·m−7/2. Interestingly, the upper bound for the moment
release resulting from this value of Isitu aligns closely with our estimates of moment release and
injected fluid volumes for this very same set of experiments (Fig. 5, yellow triangles). Note
that in Fig. 5, the factor N must always be interpreted as being greater than Isitu due to
the combined effect of the coefficients Cν and Cshut-in. In addition, this upper bound seems to
explain relatively well the centimeter-scale laboratory experiments presented in this study (cyan
triangles; Supplementary Materials) and the meter-scale laboratory experiments of Cebry et al.
[50] (red triangles). The former experiments were carried out under almost identical conditions
to the ones of Passelègue et al. [49], whereas the latter ones were conducted in a similar saw-cut
granitic fault with hydraulic properties that are close to the ones of Passelègue et al.’s fault at
the lower confining pressures of this latter one [49].

At the large scale of industrial fluid injections, we consider one of the best-documented field
cases: the 1993 hydraulic stimulation at the Soultz geothermal site in France [3]. The hydraulic
transmissivity associated with the 550-m open-hole section stimulated during the test has been
estimated to experience a 200-fold increase as a consequence of the two fluid injections conducted,
giving us a possible range of approximately 10−14 m3 to 2×10−12 m3 [59]. However, the smallest
value of kw represents only the very short, initial part of the injection [59]. Therefore, a possible
variation between 5×10−14 m3 and 2×10−12 m3 seems a more reasonable range to be considered
within the assumptions of our model which assumes a constant transmissivity. On the other
hand, the hydraulic diffusivity possesses significant uncertainties due to the single-well nature
of the hydraulic data in contrast to the double-well measurements employed, for instance, by
Passelègue et al. [49] in the laboratory. We consider a range of values for α from 0.01 m2/s to
0.1 m2/s, which is consistent with estimates derived from micro-seismicity migration [45] and
aseismic fracture slip [24]. Assuming a water dynamic viscosity of η = 2 × 10−4 Pa·s which
is representative of the temperature conditions within the reservoir [60], we estimate wS to
fall within the range of 5 × 10−8 m/Pa to 10−7 m/Pa. With these estimates, we calculate a
representative maximum value for the in-situ factor in this field test to be roughly Isitu ∼ 109

N· m−7/2. As shown in Fig. 5, the resulting upper limit aligns very well with the field data
(circles), providing an effective upper bound for the hectometric to kilometric rupture cases
composing the dataset. Furthermore, this simplified, order-of-magnitude analysis suggests that
the behavior of the upper limit we observe from the laboratory to the reservoir scale, namely,
the decrease of the factor N with increasingly larger volume and moment release scales, might
be primarily controlled by an increase in fault-zone storativity. Moreover, the upper bound for
intermediate scales (in-situ experiments, square symbols in Fig. 5) is characterized by a value
of N (or Isitu) that is approximately in the middle of the values that provide an upper limit for
the laboratory and field data, suggesting that the increase in storativity with larger scales could
be a general explanation for the trend observed throughout the entire dataset.
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Figure 6: Comparison of our scaling relation for the maximum rupture run-out dis-
tance Rmax with estimates of rupture extent for the same injection-induced slow
slip events as in Fig. 5, as a function of the total injected fluid volume. We consider
two values of the factor M (solid black lines) which together form an upper bound for the data
across different volume and rupture run-out distance scales. Likewise in Fig. 5, for some events
the rupture extent is estimated within a range that is represented by a vertical line connecting
their maximum and minimum values (see Supplementary Materials for further details)
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Finally, Fig. 6 shows the comparison of our scaling relation for the maximum rupture run-
out distance, equation (4), with the estimated rupture run-out distances for the same injection-
induced aseismic slip events as in Fig. 5. To facilitate the interpretation, we similarly define
the factor M = SνAsitu accounting for all effects other than the injected fluid volume, so that
equation (4) becomes simply Rmax = M

√
Vtot. It is important to note that the effects of

∆τr−0 and wS are now of similar order, as Rmax scales alike with the background stress change

Rmax ∝ ∆τ
−1/2
r−0 and fault-zone storativity Rmax ∝ (wS)−1/2. Considering the same range of

values for fr, ∆τr−0 and wS discussed previously, we calculate Asitu to be around 200 m−1/2

for Passelègue et al.’s experiments, and 15 m−1/2 for the Soultz case. As shown in Fig. 6, the
upper limits resulting from these two values of Asitu (considering also an amplification due to
the factor Sν) are in remarkably good agreement with the data, providing an effective upper
bound for the maximum rupture run-out distance from cm-scale ruptures in the laboratory to
km-scale ruptures in industrial applications.

3 Discussion

Our results provide a rupture-mechanics-based estimate for the maximum size, moment release,
and magnitude of injection-induced slow slip events. Moreover, the dependence of our scaling
relations on in-situ conditions and injected fluid volume allows us to explain variations in rupture
sizes and moment releases resulting from fluid injections that span more than 12 orders of
magnitude of injected fluid volume. Similar scaling relations for the moment release of regular,
fast earthquakes have been previously proposed in the literature [28, 32, 35]. Notably absent in
those relations, fault-zone storativity appears here to be a crucial factor influencing the upper-
bound behavior we observe with increasing scales of volume and moment release in the data.
While our scaling relation for the maximum aseismic rupture run-out distance is the first of
its kind, McGarr and Barbour [61] suggested in a prior work that for the moment release, the
relation for the cumulative moment ΣM0 = 2µVtot that was originally proposed by McGarr
[28] for regular earthquakes, account also for aseismic slips. It is thus pertinent to discuss their
scaling relation in light of our findings.

We first note that in testing their relation, McGarr and Barbour [61] incorporated numerous
data points of aseismic moment release and injected volume into a dataset characterized by
otherwise only regular earthquakes. All of these aseismic slip events come from laboratory
experiments of hydraulic fracturing [62], except for one single data point that stems from direct
measurements of injection-induced aseismic slip during an in-situ experiment [6]. The mechanics
of hydraulic fractures [63], however, differs significantly from its shear rupture counterpart.
Indeed, the moment release by hydraulic fractures scales linearly with the injected fluid volume
simply because the integral of the fracture width over the crack area is equal to the fracture
volume. The latter is approximately equal to the injected volume under common field conditions,
namely, negligible fluid leak-off and fluid lag [63]. In our study, we discarded these hydraulic-
fracturing data points because they correspond to a different phenomenon. The remaining data
point of McGarr and Barbour, which does correspond to a fluid-driven shear rupture [6], is
retained in our dataset albeit with a certain degree of uncertainty based on moment release
estimates provided by more recent studies (Supplementary Materials).

In terms of modeling assumptions, one of the most significant differences between McGarr’s
and ours is that we account for the potential for aseismic ruptures to propagate beyond the
fluid-pressurized region (λ ≫ 1). This regime, which from an upper-bound perspective is of
most practical interest as it produces the largest ruptures for a given injection, is not allowed by
construction in McGarr’s model due to his assumption that any fault slip induced by the fluid
injection must be confined within the region where pore fluids have been effectively pressurized
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due to the injection [28]. We emphasize that aseismic ruptures breaking non-pressurized fault
regions are a possibility that always emerges when incorporating rupture physics in a model
[43], even in the absence of frictional weakening owing simply to long-range elastostatic stress
transfer effects [20]. Moreover, such a regime has already been directly observed in laboratory
experiments [50], and inferred to have occurred during in-situ experiments [6, 20] and industrial
fluid injections for reservoir stimulation [21]. Furthermore, as a natural consequence of incor-
porating rupture physics in our model, we obtain a dependence of the moment release on the
background stress state and fault frictional parameters. McGarr’s model is, in contrast, insensi-
tive to these physical quantities, which largely control the release of elastic strain energy during
rupture propagation. Another important distinction between both models is that McGarr’s re-
lies uniquely on the capacity of the rock bulk to elastically deform and volumetrically shrink to
accommodate the influx of fluid mass from the injection, unlike our model which accounts for
bulk, fluid, and pore compressibilities within the fault zone via the so-called oedometric storage
coefficient [42].

Despite the significant differences between both models, it is pertinent to compare McGarr’s
relation for the moment release with our newly compiled dataset. By doing so, we observe
that McGarr’s upper bound can explain the majority of the data points, albeit with one very
important exception (Fig. 5): the 2017 Mw 5.0 slow slip event in western Canada [10]; the
largest event detected thus far. Specifically, McGarr’s formula fails by predicting a maximum
magnitude of 4.4 (considering Vtot = 88, 473 m3 and assuming a shear modulus of 30 GPa [10]).
This magnitude is equivalent to predicting an upper limit for the moment release that is 16
times smaller than the actual moment that was inferred geodetically [10]. Such underestimation
is somewhat similar to that performed by McGarr’s formula in the case of regular earthquakes:
for instance, when considering the 2017 Mw 5.5 Pohang earthquake in South Korea [15]. Our
scaling relation can, conversely, explain theMw 5.0 slow slip event in Canada and, more generally,
our entire compilation of events by accounting for variations in in-situ conditions such as the
background stress change (∆τr−0) and, especially, the fault-zone storativity (wS). Note that
from a ‘data-fitting’ perspective, the dependence of our model on wS and ∆τr−0 introduces
additional degrees of freedom compared to McGarr’s formula, which depends only on the injected
fluid volume and the shear modulus; a parameter that has very little variation in practice.

Our estimates of the maximum rupture size and magnitude for slow slip events may be re-
garded, to some extent, as an aseismic counterpart of the also rupture-mechanics-based scaling
relation proposed by Galis et al. [32] for regular earthquakes. Although we are describing a
fundamentally different process here, the two scaling relations share the same 3/2-power law
dependence on the injected fluid volume. This equal exponent arises from the similarities be-
tween the competing forces driving both slow slip events and dynamic ruptures in each model,
namely, a point-force load due to fluid injection and a uniform stress change behind the cohesive
zone and within the ruptured surface. In Galis et al.’s model, a point-force-like load is imposed
to nucleate an earthquake. In our model, it is the natural asymptotic form that the equivalent
force associated with the fluid injection takes in the regime that provides the largest ruptures
for a given injection (λ ≫ 1). Note that the two models differ in their storativity-like quantity.
As we discussed before, we account for the capacity of the fluid, pore space, and bulk material in
the fault zone to store pressurized fluids. In contrast, Galis et al.’s model accounts only for the
capacity of the bulk material: a property they inherited from McGarr’s model [28]. A revision
of seismic scaling relations may be required to include the notion of a more general storativ-
ity term, particularly considering the significant variability in pore compressibility observed in
practice [54–57] which can sometimes dominate over bulk and fluid compressibilities. Another
important difference with Galis et al.’s model is the uniform variation of background stress which
in their model is the so-called stress drop ∆τ0−r = τ0−frσ

′
0, whereas in our case, it corresponds

to the same quantity but of opposite sign, ∆τr−0 = frσ
′
0 − τ0. Conceptually, this is indeed a

very important difference. In our model, the stress drop is negative, which implies that after
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the termination of the injection operation and the subsequent dissipation of overpressure due
to the injection, the residual shear stress acting on the slipped fault patch will be greater than
the initial shear stress. This, which is a prominent feature of unconditionally stable ruptures,
implies no release of tectonically accumulated pre-stresses on the fault.

The previous point brings us to an important issue: we have considered only one of the two
possible modes of aseismic slip, namely, fault ruptures that are unconditionally stable. How-
ever, injection-induced aseismic slip can also be the result of conditionally stable slip, that is,
the nucleation phase preceding an otherwise dynamic rupture. The principal factor determining
whether aseismic slip will develop in one way or the other is the so-called ultimate stability
condition [25, 43]. For conditionally stable slip to occur, the initial shear stress must be thus
greater than the background residual fault strength (τ0 > frσ

′
0), resulting in a positive stress

drop. This is therefore the mode of aseismic slip that can potentially release tectonically accu-
mulated pre-stresses. In general, we cannot rule out that the points in the datasets of Fig. 5
and 6 correspond to either conditionally stable or unconditionally stable slip, as estimating the
background stress state and fault frictional properties that are representative of the reactivated
fault remains extremely challenging in practice. There is, nevertheless, at least one case in the
dataset in which aseismic slip is as a matter of fact, conditionally stable. These are the two
aseismic slip events from the meter-scale laboratory experiments of Cebry et al. [50], which
preceded seismic ruptures that broke the entire fault interface sample (Supplementary Mate-
rials). The scaling relations resulting from this mode of aseismic slip are therefore important.
Moreover, considering that the data points from Cebry et al.’s experiments align well with the
other points in the dataset, we anticipate these scaling relations to be similar in their structure
to the ones presented here.

Our model aimed to capture the most essential physical ingredients of unconditionally stable
ruptures to provide the desired theoretical insights into the physical mechanisms controlling the
maximum size and magnitude of injection-induced slow slip events. To achieve this, we have
however adopted several simplifying assumptions that warrant further investigation. In partic-
ular, our model does not account for fluid leak-off from the permeable fault zone to the host
rock, nor permeability enhancements associated with fault slip and/or the reduction of effective
normal stress due to fluid injection. Despite these simplifications, we expect our scaling rela-
tions to still provide an effective upper bound with regard to these additional factors. Indeed,
we think that incorporating a permeable host rock would notably decrease the injection over-
pressure in the fault zone compared to the impermeable case, thus decelerating rupture growth.
The effect of slip-induced dilatancy, which is relatively well-established [64, 65], would introduce
a toughening effect that would similarly slow down slip propagation from a fracture-mechanics
perspective. Furthermore, permeability enhancements due to both dilatancy and reduced effec-
tive normal stress are expected to be inconsequential in the limit λ ≫ 1, which is the relevant
one for establishing an upper bound. This is due to, in this regime, most of the slipping region
remains non-pressurized except for a small area near the fluid source. The strength of this small
(point-force-like) region remains unchanged in our model, provided that the enhanced hydraulic
properties are considered as the constant ones [65]. An additional simplification in our model is
the consideration of a single fault zone. Although this might likely be the case for the majority
of the events incorporated in our dataset [6, 10, 21, 49–53], in some cases, a network of fractures
or faults could be reactivated instead [3, 60]. Recent numerical modeling studies on injection-
induced aseismic slip have, however, shown that approximately the same scaling relations for
the moment release predicted by a single fracture in two dimensions emerge collectively for a
set of reactivated fractures belonging to a two-dimensional discrete fracture network [44]. This
is notably the case when the regime λ ≫ 1 is reached in a global, fracture-network sense. Yet
the generality and prevalence of this finding in three dimensions remain to be confirmed.

We notably showed that in the nearly unstable regime (λ ≫ 1), the dynamics of the rupture
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expansion in our upper-bound configuration are controlled uniquely by the history of injected
fluid volume, irrespective of any other characteristic of the injection protocol. The implications
of this finding may go well beyond the ones explored in this work. For example, in hydraulic
stimulation operations for the development of deep geothermal energy, micro-seismicity clouds
which often accompany fluid injections are commonly used to constrain the areas of the reservoir
that have been effectively stimulated. If aseismic-slip stress transfer is a dominant mechanism in
the triggering of micro-seismicity, our model suggests that these seismicity clouds may contain
important information about the pre-injection stress state and fault frictional properties which
are embedded in the factor Asitu (equation (2)). Moreover, if the effect of the fracture energy on
rupture propagation can be approximately neglected in comparison to the other two competing
forces driving aseismic ruptures in our model, that is, the background stress change and fluid-
injection force, our results imply that the spatiotemporal patterns of seismicity migration might
be deeply connected to injection protocols via the dependence of the aseismic slip front dynamics
on the square root of the cumulative injected fluid volume. This could be used, for instance,
to identify from injection-induced seismicity catalogs under what conditions aseismic-slip stress
transfer may become a potentially dominant triggering mechanism due to this unique spatiotem-
poral footprint, which differs notably from the ones emerging from other triggering mechanisms
such as pore pressure diffusion and poroelastic stressing [66, 67]. Similarly, our model could
be potentially applied to the study of natural seismic swarms where sometimes fluid flow and
aseismic slip processes are thought to be the driving forces behind their observed dynamics [68,
69]. Lastly, our model could be also utilized to understand slow slip events occurring at tectonic
plate boundaries in many subduction zones worldwide. The fundamental mechanics of slow slip
events remains debated [70] yet multiple, recent observations suggest that their onset and arrest
might be spatially and temporally correlated with transients of pore-fluid pressure [71–73].

Finally, we emphasize that our investigation has focused on constraining the rupture size
and moment release of purely aseismic injection-induced ruptures. However, in some instances,
seismic or micro-seismic events may release a substantial portion of the elastic strain energy
stored in the medium. In this study, we have incorporated in our compilation of events only
cases where the seismic contribution to the moment release is thought to be orders of magnitude
smaller than the aseismic part. From a mechanics perspective, this aimed to exclude events
where the stress transfer from frictional instabilities could significantly influence the dynamics
of the slow rupture under consideration, thereby ensuring a robust comparison between the data
and the scaling relations of our model. Future studies should therefore focus on understanding
what physical factors govern the partitioning between aseismic and seismic slips during injection
operations. Our work, in this sense, contributes to such possibility by providing an upper limit
to the previously unexplored aseismic end-member. Together with prior works on purely seismic
ruptures, we believe this offers a starting point to examine slip partitioning during injection-
induced fault slip sequences: a crucial step toward advancing our physical understanding of the
seismogenic behavior of reactivated faults and the associated seismic hazard.

4 Materials and Methods

4.1 Time-dependent upper-bound model for the size of unconditionally sta-
ble ruptures

We define the axisymmetric overpressure due to the injection as ∆p(r, t) = p(r, t)− p0, with p0
the uniform background pore pressure. During the pressurization stage (t ≤ ts), the overpressure
is given by ∆p(r, t) = ∆p∗ · E1

(
r2/4αt

)
for an injection at constant flow rate Q0 [74], where

∆p∗ = Q0η/4πkw is the intensity of the injection with units of pressure, α is the fault hydraulic
diffusivity, η is the fluid dynamic viscosity, the product kw is the so-called fault hydraulic
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transmissivity, and E1 is the exponential integral function. The fracture-mechanics energy
balance for a quasi-static circular rupture propagating on a slip-weakening fault was presented
in [25]. In our upper-bound configuration here, neglecting the fracture energy spent during
rupture propagation leads to the following expression describing the evolution of the rupture
radius R with time:

2√
π

fr∆p∗√
R(t)

∫ R(t)

0

E1

(
r2/4αt

)√
R(t)2 − r2

rdr =
2√
π
∆τr−0

√
R(t), (10)

where ∆τr−0 = frσ
′
0 − τ0 is the background stress change. In equation (10), the integral term

of the left-hand side is associated with an influx of potential energy towards the rupture front
which becomes available for the rupture to grow owing to the sole effect of overpressure due to
the injection. Conversely, the term of the right-hand side due to the background stress change
is responsible alone for resisting rupture advancement. Nondimensionalization of equation (10)
shows that the competition between both energy terms is quantified by one single dimensionless
number, the so-called residual stress-injection parameter Tr = ∆τr−0/fr∆p∗, introduced first in
[25]. Moreover, equation (10) admits analytical solution in the form: R(t) = λ · L(t) [23], with
the asymptotes λ ≃ 1/

√
2Tr for nearly unstable ruptures (λ ≫ 1, Tr ≪ 1), and λ ≃ e(2−γ−Tr)/2/2

for marginally pressurized ruptures (λ ≪ 1, Tr ∼ 10). To highlight how significant is to analyze
the end-member cases of nearly unstable (λ ≫ 1) and marginally pressurized (λ ≪ 1) ruptures
throughout this work, we refer to their asymptotes for λ plotted in Fig. 2b which nearly overlap
and thus quantify together almost any rupture scenario. This analytical solution for λ was first
derived by Sáez et al. [23] for a fault interface with a constant friction coefficient (equation (21)
in [23]). Here, in our upper-bound configuration, the mathematical solution is identical to the
one presented in [23] provided that the constant friction coefficient f in [23] is understood as
the residual value fr of the slip-weakening friction law here.

To make the link between the evolution of the rupture radius R(t) and the injected fluid
volume V (t) in the most practically relevant, nearly unstable regime (λ ≫ 1), we use the asymp-
tote R(t) ≃ (1/

√
2Tr)L(t) in combination with the following expressions for the residual stress-

injection parameter Tr = ∆τr−0/fr∆p∗, overpressure intensity ∆p∗ = Q0η/4πkw, overpressure
front L(t) =

√
4αt, hydraulic diffusivity α = k/Sη, and injected fluid volume V (t) = Q0t. By

doing so, we arrive at equation (2) in the main text. For non-circular ruptures (ν ̸= 0), building
upon the work of Sáez et al. [23] for a constant friction coefficient, we obtain that the rupture
front of our upper-bound model is well-approximated by an elliptical shape that becomes more
elongated for increasing values of ν and decreasing values of Tr, with a maximum aspect ratio
of 1/(1 − ν) when Tr ≪ 1 and a minimum aspect ratio of (3 − ν)/(3 − 2ν) when Tr ∼ 10.
Other features of Sáez et al.’s model [23] such as the invariance of the rupture area with regard
to the Poisson’s ratio and the numerically-derived asymptotes for the quasi-elliptical fronts are
also inherited here in the upper-bound model. In the shut-in stage (t > ts), the overpressure is
obtained by superposition simply as ∆p(r, t) = ∆p∗ ·

[
E1

(
r2/4αt

)
− E1

(
r2/4α(t− ts)

)]
. The

spatiotemporal evolution of overpressure has been studied in detail in [24]. Moreover, as al-
ready discussed in the main text, we reduced the upper-bound problem in the shut-in stage to a
fault responding with a constant friction coefficient equal to fr. Hence, our upper-bound model
inherits all the results obtained by Sáez and Lecampion [24] who investigated extensively the
propagation and arrest of post-injection aseismic slip on a fault obeying a constant friction coef-
ficient. In particular, we take advantage of their understanding of the propagation and arrest of
the slip front that ultimately determines the maximum size of unconditionally stable ruptures
in our upper-bound model. Here, we have indeed expanded the work of Sáez and Lecampion
[24] to account for an examination of the previously unknown evolution of the moment release
during the shut-in stage (Fig. 4).
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4.2 Asymptotics of moment release for nearly unstable and marginally pres-
surized ruptures

The scalar moment release M0 at a given time t is given by [75],

M0(t) = µ

∫∫
Ar(t)

δ(x, y, t)dxdy, (11)

where µ is the bulk shear modulus, δ is the current slip distribution, and Ar is the current
rupture surface. To calculate the time-dependent slip distribution in the circular rupture case,
we consider the quasi-static relation between fault slip δ and the associated elastic change of
shear stress ∆τ within an axisymmetric circular shear crack [76]:

δ(r, t) =
4R(t)

πµ

∫ 1

r̄

ξdξ√
ξ2 − r̄2

∫ 1

0

∆τ(sξR(t), t)sds√
1− s2

, (12)

where r̄ = r/R(t) is the normalized radial coordinate. Equation (12) was originally derived for
an internally-pressurized tensile circular crack with axisymmetric load [76]. Nevertheless, under
the assumptions of uni-directional slip with axisymmetric magnitude and a Poisson’s ratio ν = 0,
the shear crack problem is mathematically equivalent on the fault plane to its tensile counterpart
[20]: crack opening being δ and crack-normal stress change being ∆τ . In the limiting regime of
a rupture propagating with zero fracture energy and at the residual friction level fr, the change
of shear stress is simply

∆τ(r, t) = τ0 − fr
[
σ′
0 −∆p(r, t)

]
= fr∆p(r, t)−∆τr−0, (13)

where ∆τr−0 = frσ
′
0 − τ0 is the background stress change. Hence, for injection at a constant

volumetric rate Q0, the spatio-temporal evolution of slip for the end-member cases of nearly
unstable (λ ≫ 1) and marginally pressurized (λ ≪ 1) ruptures turn out to be identical to the
ones determined by Sáez et al. [23] for their so-called critically stressed regime (equation (26)
in [23]) and marginally pressurized regime (equation (25) in [23]) respectively, as long as we
interpret their constant friction coefficient f as fr. The self-similar slip profiles can be written
in a more convenient dimensionless form as:

δ(r, t)/δ∗(t) = D (r/R(t)) , with δ∗(t) =

{
∆τr−0R(t)/µ when λ ≫ 1,

fr∆p∗R(t)/µ when λ ≪ 1,
(14)

and

D(x) =

{
(4/π)(arccos(x)/x−

√
1− x2) when λ ≫ 1,

(8/π)(
√
1− x2 − x · arccos(x)) when λ ≪ 1.

(15)

Note that in the nearly unstable regime (λ ≫ 1), we have recast equation (26) in [23] using
the expressions L(t) = R(t)/λ and λ ≃ 1/

√
2Tr. The nearly unstable asymptote for fault

slip is plotted in Fig. 3b and compared to the numerical solution. Integration of the self-
similar slip profiles via equation (11) leads to the asymptotes for the moment release during
the pressurization stage given in the main text: M0(t) = (16/3)∆τr−0R(t)3 when λ ≫ 1, and
M0(t) = (16/9)fr∆p∗R(t)3 when λ ≪ 1. It is worth mentioning that the slip distribution
of nearly unstable ruptures has a singularity (of order 1/r) at r = 0. Strictly speaking, this
asymptote corresponds to the solution of the so-called outer problem which is defined at distances
r ≫ L(t). An interior layer must be resolved at distances r ∼ L(t) to obtain the finite slip at the
injection point, which scales as δc(t) = fr∆p∗L(t)/µ [23] (see Fig. 3b). Nevertheless, this interior
layer has no consequences in estimating the moment release. Indeed, the integrand in equation
(11) for such a slip distribution is non-singular so that after taking the limit L(t)/R(t) → 0,
one effectively recovers the actual asymptote for the moment release. The details of the interior
layer are therefore irrelevant to the calculation of M0 in this limit.
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4.3 Relation between fluid-injection force and injected fluid volume for ar-
bitrary fluid sources

Under the assumptions of our model, the displacement field u induced by the fluid injection
into the poroelastic fault zone is irrotational ∇ × u = 0 [40]. Therefore, the variation in fluid
content ζ, which corresponds to the change of fluid volume per unit volume of porous material
with respect to an initial state (here, t = 0), satisfies the following constitutive relation with the
pore-fluid overpressure ∆p (eq. 96, [41]),

ζ = S∆p, (16)

where S is the so-called oedometric storage coefficient representing the variation of fluid content
caused by a unit pore pressure change under uniaxial strain and constant normal stress in the
direction of the strain [42], here, the z-axis (Fig. 1c). S accounts for the effects of fluid, pore,
and bulk compressibilities of the fault zone, and is equal to [41]

S =
1

M
+

b2(1− 2ν)

2(1− ν)µ
, (17)

where M is the Biot’s modulus and b the Biot’s coefficient.

To obtain the cumulative injected fluid volume at a given time, V (t), we just sum up
changes in fluid volume all over the spatial domain of interest, say Ω, at a given time t, that is,
V (t) =

∫
Ω ζdΩ. In our model, the fluid flow problem is axisymmetric and the fault-zone width

w is uniform, such that the differential of the volume is simply dΩ = 2πwrdr in cylindrical coor-
dinates. With these definitions, we can now integrate (16) over the entire fault-zone volume to
obtain the following expression for the injected fluid volume valid for an arbitrary fluid injection:

V (t) = Sw · 2π
∫ ∞

0
∆p(r, t)rdr. (18)

By defining the normal force induced by the fluid injection over the slip surface (simply equal
to the integral of the overpressure over the fault plane) as:

F (t) = 2π

∫ ∞

0
∆p(r, t)rdr, (19)

we arrive at the following relation between the fluid-injection force and injected fluid volume:

F (t) =
V (t)

wS
. (20)

Expressions of a similar kind to (20) have been reported in previous studies [28, 77, 78]. For
example, McGarr [28] considered a similar relation except that his storativity-like term is the
inverse of the elastic bulk modulus. Garagash [78] also proposed a similar expression to (20)
but accounting only for pore compressibility. Finally, the relation considered by Shapiro et al.
[77] is the closest to our expression, including the oedometric storage coefficient.

4.4 Scaling relations for nearly unstable ruptures accounting for arbitrary
fluid injections

Nearly unstable ruptures (λ ≫ 1) provide the upper bound of most practical interest. Here,
we generalize such an upper bound for the rupture size and moment release to account for an
arbitrary fluid injection. In the pressurization stage (t ≤ ts), the reduction of fault strength due
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to fluid injection in the so-called outer problem (r ≫ L(t)) can be effectively approximated as a
point force (e.g., [23, 43]),

fr∆p(r, t) ≈ frF (t)
δdirac(r)

2πr
= fr

V (t)

wS

δdirac(r)

2πr
, (21)

where F (t) is the fluid-injection normal force, equation (19), which is related to the cumulative
injected fluid volume via equation (20). Substituting equation (21) into the stress change (13),
and then the latter into the double integral, equation (12), we obtain upon evaluating those
integrals an asymptotic upper bound for the spatiotemporal evolution of fault slip as:

δ(r, t) =
4

π

∆τr−0

µ
R(t)

[
frV (t)

2πwS∆τr−0

arccos (r/R(t))

r/R(t)
−
√
1− (r/R(t))2

]
, (22)

The propagation condition for a rupture with negligible fracture energy, equation (10), can
be alternatively written in terms of the slip behavior near the rupture front as [79],

lim
r→R(t)−

∂δ(r, t)

∂r

√
R(t)− r = 0. (23)

This imposes a constraint in the slip distribution (22) that can be also seen, in a limiting sense,
as eliminating any stress singularity at the rupture front. By differentiating equation (22) with
respect to r, and then applying the propagation condition (23), we obtain the following relation:

R(t) =

√
frV (t)

2πwS∆τr−0
, (24)

which is valid for an arbitrary fluid injection.

Equation (24) is identical to equation (2) in the main text, which was originally derived
for injection at constant flow rate. It thus represents a generalization of the insightful relation
between the evolution of the rupture radius and the cumulative injected fluid volume, equation
(2), for arbitrary fluid injections. Note that alternatively, equation (24) can be derived through
the rupture propagation condition imposed over the stress change, equation (10). It only takes to
replace the particular overpressure solution for injection at a constant volumetric rate, ∆p(r, t) =
∆p∗E1

(
r2/4αt

)
, by the more general point-force representation, equation (21). We report here

the derivation based on the slip distribution because it makes now the calculation of the moment
release for arbitrary fluid injections straightforward. Indeed, by substituting (24) into (22), we
obtain the slip distribution satisfying the zero-fracture-energy condition of our upper-bound
model. Upon integrating the resulting slip profile via equation (11), we obtain the following
final expression for the moment release:

M0(t) =
16

3(2π)3/2
V (t)3/2√
∆τr−0

(
fr
wS

)3/2

, (25)

which is identical to equation (6) in the main text, thus demonstrating that the relation between
the moment release, in-situ conditions, and injected fluid volume (6), holds for arbitrary fluid
injections.

Finally, we note that some constraints on the fluid source are required to ensure that some
important model assumptions are satisfied. For example, the rupture must always propagate
in a crack-like mode during the pressurization stage. This is necessary so that equations (10)
and (12) (in combination with (13)) remain always valid. Essentially, crack-like propagation
allows for substituting the shear stress acting within the ruptured surface directly with the fault
shear strength at any time during propagation. This would not be valid, for instance, for the
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pulse-like ruptures characterizing the shut-in stage [24], where behind the locking front equating
the shear stress to the fault strength is no longer valid. As discussed in the main text, crack-like
propagation holds at least in one relevant scenario, where the pore pressure increases monoton-
ically everywhere within the fault zone. Another assumption in the upper bound rationale of
our model relies on the following property of unconditionally stable ruptures: the effect of the
fracture energy in the front-localized energy balance must diminish as the rupture grows and,
ultimately, become negligible [25]. Although this is certainly valid even in the case of arbitrary
fluid injections, it relies on an implicit assumption of the slip-weakening model, namely, the
fracture energy being constant. Our theoretical framework allowed in principle to account for
non-constant and non-uniform fracture energy. We do not account for fracture-energy hetero-
geneity for the same reason that we do not account for stress or other kinds of heterogeneities
in our model: we aim to provide fundamental, first-order insights into the problem at hand.
Moreover, we also do not consider a possible scale dependence of the fracture energy. The
scale-dependency of fracture energy for seismic ruptures is a topic of active research ([80] and
references therein). Although we do expect this phenomenon to be also present in aseismic rup-
tures, to the best of our knowledge, there is no experimental or observational evidence suggesting
such behavior for slow frictional ruptures. We therefore refrain from exploring the theoretical
implications of this hypothetical physical ingredient at the moment.

4.5 Numerical methods

All the numerical calculations in this study have been conducted via the boundary-element-
based method described in [23]. For the general case of non-circular ruptures, we use the fully
three-dimensional method presented in [23]. For the particular case of axisymmetric, circular
ruptures, we use a more efficient axisymmetric version of the method presented in [24].
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24. Sáez, A. & Lecampion, B. Post-injection aseismic slip as a mechanism for the delayed
triggering of seismicity. Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences 479, 20220810 (2023).
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