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G E O P H Y S I C S

Maximum size and magnitude of injection- induced 
slow slip events
Alexis Sáez1*†, François Passelègue2, Brice Lecampion1

Fluid injections can induce aseismic slip, resulting in stress changes that may propagate faster than pore pressure 
diffusion, potentially triggering seismicity at substantial distances from injection wells. Constraining the maxi-
mum extent of these aseismic ruptures is, thus, important for better delineating the influence zone of injections 
concerning their seismic hazard. Here, we derive a scaling relation based on rupture physics for the maximum size 
of aseismic ruptures, accounting for fluid injections with arbitrary flow rate histories. Moreover, on the basis of 
mounting evidence that the moment release during these operations is often predominantly aseismic, we derive 
a scaling relation for the maximum magnitude of aseismic slip events. Our theoretical predictions are consistent 
with observations over a broad spectrum of event sizes, from laboratory to real- world cases, indicating that fault 
zone storativity, background stress change, and injected fluid volume are key determinants of the maximum size 
and magnitude of injection- induced slow slip events.

INTRODUCTION
A growing body of observations suggests that a substantial part of the 
deformation induced by subsurface fluid injections is due to aseismic 
fault motions (1–11). This phenomenon, known as injection- induced 
aseismic slip, has been known since at least the 1960s when a slow 
surface fault rupture was causally linked to fluid injection operations 
of an oil field in Los Angeles (1). Since then, an increasing number of 
observational studies have inferred the occurrence of slow slip events 
as a result of industrial fluid injections. For example, in the Brawley 
Geothermal Field, California, ground-  and satellite- based geodetic 
techniques allowed for the detection of an injection- induced aseismic 
slip event (7, 9). This event was found to precede and likely trigger a 
seismic sequence in 2012 (12). In western Canada, two of the largest 
aseismic slip events observed thus far (magnitudes of 5.0 and 4.2) 
occurred in 2017–2018 and were detected using interferometric syn-
thetic aperture radar (InSAR) measurements of surface deformation 
(10). These events were attributed to hydraulic fractures possibly in-
tersecting glide planes during the stimulation of an unconventional 
hydrocarbon reservoir (10). Similarly, InSAR- derived surface defor-
mations allowed for the recent detection of aseismic ruptures in the 
southern Delaware Basin, Texas (11), likely induced by wastewater 
injection operations (13). These recent geodetic observations, in 
combination with mounting evidence for aseismic slip from fluid in-
jection field experiments (2–6, 8), suggest that injection- induced slow 
slip events might be a ubiquitous phenomenon, largely underdetected 
over the past decades only due to the lack of geodetic monitoring.

There is increasing recognition of the importance of injection- 
induced aseismic slip in the geo- energy industry. For instance, in 
the development of deep geothermal reservoirs, hydraulic stimula-
tion techniques are commonly used to reactivate preexisting fractures 
in shear. This process aims to enhance reservoir permeability through 
the permanent dilation of preexisting fractures or the creation of 
new ones. The occurrence of predominantly aseismic rather than 

seismic slip is desirable, as earthquakes of considerable magnitude 
can pose a substantial hazard to the success of these projects (14, 15). 
Injection- induced aseismic slip, however, can be detrimental in sev-
eral ways. For example, aseismic slip on fractures intersecting wells 
can cause casing shearing (3, 10) and adversely affect well stability 
(16, 17). In addition, in carbon dioxide (CO2) storage operations, 
injection- induced aseismic slip could affect the integrity of low- 
permeability caprocks, as fault slip may be accompanied by perme-
ability enhancements, increasing the risk of CO2 leakage (18, 19). 
Similar concerns may arise in other underground operations such as 
the storage of hydrogen and gas. Furthermore, it is well established 
that quasi- static stress changes due to aseismic slip may induce seis-
mic failures on nearby unstable fault patches (2–4, 6, 7). Moreover, 
since aseismic slip can propagate faster than pore pressure diffusion 
(6, 20, 21), aseismic slip stress changes can potentially reach regions 
much further than the zones affected by the direct increase in pore 
pressure due to injection, thereby increasing the likelihood of trig-
gering earthquakes of undesirably large magnitude by perturbing a 
larger rock volume (12, 21, 22).

Understanding the physical factors controlling the spatial extent 
of aseismic slip is, thus, of great importance to better constrain the 
influence zone of injection operations concerning seismic hazards. 
Recent theoretical and numerical modeling studies have provided, 
within certain simplifying assumptions, a fundamental mechanistic 
understanding of how injection- induced aseismic slip grows in a re-
alistic three- dimensional context and through all its stages from nu-
cleation to arrest (23–25). Estimating the rupture run- out distance of 
aseismic slip transients remains, despite these efforts, an unresolved 
issue, particularly as these prior investigations have focused only on 
specific injection protocols (23–25). However, the spatiotemporal 
patterns of injection- induced aseismic slip growth are anticipated to 
be strongly influenced by the history of the injection flow rate (23). 
On the other hand, a related issue is estimating the maximum mag-
nitude of injection- induced earthquakes. This quantity plays a cru-
cial role in earthquake hazard assessment and has been the focus 
of substantial research efforts in recent times (26–36). A common 
limitation of prior research in this area is neglecting the portion of 
moment release due to aseismic slip, despite considerable evidence 
suggesting that aseismic motions may contribute importantly to the 
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total moment release (1–11), potentially surpassing seismic contri-
butions in some cases (1–6, 8, 10, 37). Understanding the factors 
governing aseismic moment release is, thus, important and would 
constitute a first step toward understanding the physical controls 
on slip partitioning, that is, the relative contributions of aseismic 
and seismic motions to the release of elastic strain energy, which is 
crucial for a better understanding of the seismic hazard posed by 
these operations.

Building upon our previous works (23–25), we develop here an 
upper bound model for the temporal evolution of the spatial extent 
and moment release of injection- induced aseismic slip events that 
are unconditionally stable. This model is based on a canonical sce-
nario where fluids are injected at a constant volumetric rate up to a 
specified time, after which the injection is abruptly stopped, captur-
ing both the injection and shut- in stages. Furthermore, using fracture 
mechanics theory and scaling analysis, we propose scaling relations 
for the maximum size and magnitude of injection- induced aseismic 
ruptures, accounting for injection operations with arbitrary flow rate 
histories during the injection stage, provided the rupture propagates 
in crack- like mode while injecting. These scaling relations emerge 
from a rupture regime in which fault slip outpaces pore- fluid migra-
tion, representing in situ conditions that yield the largest ruptures 
for a given injection. Our theoretical predictions are shown to be 
consistent with a global compilation of events that vary in size from 
centimeter- scale slip transients monitored in the laboratory to kilo-
meter scale, geodetically inferred slow slip events induced by industrial 
injections. Furthermore, our results suggest that fault zone storativity 
(the product between fault zone width and oedometric storage coef-
ficient), background stress change (the background residual shear 
strength of the fault minus the prestress), and injected fluid volume 
are crucial quantities in determining the maximum size and magnitude 
of aseismic ruptures. Notably, the total fluid volume injected by a given 
operation is shown to be the only operational parameter that matters 
in determining the maximum size and magnitude of these events, 
regardless of any other characteristic of the injection protocol.

RESULTS
Physical model and upper bound rationale for 
unconditionally stable ruptures
We consider purely aseismic ruptures nucleated by a localized in-
crease in pore- fluid pressure due to the direct injection of fluids into 
a porous fault zone of width w (see Table 1 for a list of symbols and 
definitions used throughout this article). Fault slip is assumed to be 
concentrated in a principal slip zone modeled as a mathematical plane 
located at z = 0 (Fig. 1C). We begin by examining a fluid injection 
conducted at a constant volumetric rate Q0 over a finite time ts, 
followed by a sudden injection stop (Fig. 1A). This results in two 
distinct stages: an injection stage in which pore pressure increases 
everywhere within the permeable fault zone and a shut- in stage in 
which pore pressure decays near the injection point (Fig. 1B) while 
transiently increasing away from it (Fig. 1F). Incorporating these two 
stages into the model allows for examining aseismic ruptures through-
out their entire lifetime, from nucleation to arrest. We consider a 
planar infinite fault obeying a slip- weakening friction law [for ex-
ample, (38)] with a static (peak) friction coefficient fp, dynamic (re-
sidual) friction coefficient fr, and characteristic slip- weakening distance 
dc. The decay of friction from the peak to the residual value can be 
either linear or exponential (25). The host rock is considered purely 

elastic with the same elastic constants as the fault zone, that is, shear 
modulus μ and Poisson’s ratio ν (Fig. 1C). We assume the host rock 
to be impermeable at the relevant timescales of the injection. This 
configuration is motivated by the permeability structure of fault 
zones in which a highly permeable damage zone is commonly sur-
rounded by a less permeable host rock (39, 40). Under these assump-
tions and particularly at large times compared to the characteristic 
time for diffusion of pore pressure in the direction perpendicular to 
the fault, w2/α, with α as the fault zone hydraulic diffusivity, the volu-
metric deformation rate in the fault zone reduces to its component 
normal to the fault plane that linearly relates to the pore pressure 
rate under constant normal stress (41). Fluid flow within the fault 
zone is then governed by an axisymmetric linear diffusion equation 
for the pore pressure field p, �p∕ �t = α∇2p (42), where the hydrau-
lic diffusivity α = k∕Sη, with k and η as the fault permeability and 
fluid dynamic viscosity, respectively, and S as the so- called oedo-
metric storage coefficient (42, 43). By neglecting any poroelastic 
coupling within the fault zone upon the activation of slip, defor-
mation in the medium is then governed by linear elasticity in its 
quasi- static approximation due to the slow nature of the slip we are 
concerned with.

We presented an investigation of this physical model, which can be 
regarded as an extension to three dimensions of the two- dimensional 
plane strain model of Garagash and Germanovich (44), in a recent 
study (25). In this model (25), slow slip events can occur in two 
distinct forms, namely, unconditionally stable slip and conditionally 
stable slip. Conditionally stable slip refers specifically to the nucle-
ation phase of an otherwise dynamic rupture, whereas uncondition-
ally stable slip corresponds to a regime in which ruptures will never 
transition to a macroscopic dynamic event. As shown by Sáez and 
Lecampion (25), each of these two modes of aseismic slip is charac-
terized by distinct dynamics. In the present article, we focus exclu-
sively on the case of unconditionally stable ruptures [regime R1 in 
figure 4 of (25)]. Unconditionally stable ruptures notably require that 
the in situ residual fault strength, frσ�0, exceeds the uniform background 
shear stress, τ0, where σ�

0
= σ0 − p0 is the uniform background effec-

tive normal stress, with σ0 and p0 as the uniform background total 
normal stress and pore pressure, respectively. τ0 and σ�

0
 are thought 

to be the result of long- term tectonic processes and, thus, consid-
ered to be constant during the timescales associated with the injec-
tion operation.

In this model, unconditionally stable ruptures evolve always be-
tween two similarity solutions [Fig. 2A and see (25) for further 
details], one at early times where the fault interface operates with a 
constant friction coefficient equal to the peak value fp and the oth-
er one at late times where the fault interface behaves as if it were 
governed by a constant friction coefficient equal to the residual 
value fr. As shown in Fig. 2A, the constant residual friction solu-
tion, which is the ultimate asymptotic regime of any uncondition-
ally stable rupture, is an upper bound for the rupture size at any 
given time during the injection stage. In this asymptotic regime, 
rupture growth is dictated by a fracture- mechanics energy balance, 
where the interplay between driving and resisting forces leads to a 
scenario in which the fracture energy can be effectively neglected 
(25). During the shut- in stage, a similar upper bound rationale can 
be applied to the case of unconditionally stable ruptures. Assuming 
the fault slides with a constant residual friction value across the 
slipping region (equivalent to neglecting the fracture energy in 
the rupture- tip energy balance), this limiting solution would 
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Table 1. Symbols, definitions, and units. 

Symbol Definition Units

  α   hydraulic diffusivity of fault zone m2/s

  δ(x, y, t)   distribution of fault slip at time t m

  δc(t)   characteristic slip for nearly unstable ruptures m

  ζ(r, t)   Axisymmetric variation in fluid content within the 
fault zone at time t –

  η   dynamic viscosity of preexisting and injected fluid Pa·s

  λ(t)   time- dependent amplification factor of the slip- 
weakening model for constant injection flow rate –

  λr   time- independent amplification factor of the 
upper bound model for constant injection flow 

rate defined in eq. 2
–

  λr (t)   time- dependent amplification factor of the upper 
bound model for variable injection flow rate 

defined in eq. 28
–

  μ   Shear modulus of host rock and fault zone Pa

  ν   Poisson’s ratio of host rock and fault zone –

  σ0   Background (in situ) total stress normal to the fault 
plane Pa

  σ�
0
   Background (in situ) effective stress normal to the 

fault plane (= σ0 − p0)
Pa

  τ0   Background (in situ) fault shear stress or prestress Pa

  Δp(r, t)   Axisymmetric overpressure (= p − p0) within the 
fault zone at time t Pa

  Δp∗   injection intensity for constant injection flow rate 
defined in eq. 1 Pa

  Δp∗(t)   time- dependent injection intensity for variable 
injection flow rate Pa

  Δτr−0   Background stress change defined in eq. 1 Pa

  dc   characteristic slip- weakening distance m

  fp   Peak (or static) friction coefficient –

  fr   Residual (or dynamic) friction coefficient –

  k   Fault zone intrinsic permeability m2

  kw   Fault zone hydraulic transmissivity m3

  p0   Background (in situ) pore pressure within the fault 
zone

Pa

  p(r, t)   Axisymmetric pore pressure within the fault zone 
at time t

Pa

  ta   Rupture arrest time in the upper bound model s

  ts   Shut- in time s

  w   Fault zone width m

  wS   Fault zone storativity m/Pa

  Asitu   Prefactor in eqs. 3 and 5 associated with in situ 
conditions

m–1/2

  B(t)   Radial position of the locking circular front at 
time t

m

  Cν   Prefactor in eq. 8 associated with rupture  
noncircularity

–

  Cshut-in   Prefactor in eq. 8 associated with the shut- in stage –

  F(t)   Force normal to the fault plane induced by fluid 
injection at time t

n

  Isitu   Prefactor in eqs. 7 and 8 associated with in situ 
conditions

n·m–7/2

(Continued)
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consistently yield an upper bound for the rupture size, as the effect 
of the fracture energy is always to slow down rupture advance-
ment. The limiting scenario of constant residual friction serves, 
therefore, as an effective upper bound model for unconditionally 
stable ruptures during and after fluid injection. In the following 
sections, we explore the consequences of such a limiting condition 
to provide an upper bound for the evolution of the rupture size and 
moment release from nucleation to arrest. While the canonical ex-
ample of injection at a constant flow rate is used to comprehen-
sively examine injection- induced aseismic slip across different 
stages and regimes—ranging from scenarios where the aseismi-
cally sliding region remains confined within the pressurized zone 
to those where it propagates considerably beyond it—we empha-
size in advance that our scaling relations for the maximum size 
and magnitude (representative of cases where the aseismic slip 
front extends well beyond the pressurized region) will account for 
injection operations conducted with an arbitrary volumetric rate 

history (Fig. 1A), provided that during injection the rupture ex-
pands in crack- like mode.

Dynamics of unconditionally stable ruptures and maximum 
rupture run- out distance
During and after fluid injection, our upper bound model for injec-
tion at a constant flow rate Q0 is governed by a single dimensionless 
number (see Materials and Methods), the so- called residual stress–
injection parameter

This dimensionless number systematically emerges in physics- 
based models of injection- induced fault slip (20, 23–25, 45). It quanti-
fies the competition between the two opposite “forces” that determine 
the dynamics of unconditionally stable ruptures in our upper bound 
model. One is a driving force associated with the sole effect of pore 

r =
Δτr−0

frΔp∗
, with Δτr−0 = frσ

�
0
− τ0 and Δp∗ = Q0η∕4πkw (1)

Symbol Definition Units

  L(t)   Radial position of the nominal overpressure front 
at time t

m

  M   Prefactor of maximum rupture run- out distance 
defined in Fig. 6

m–1/2

  M0(t)   Aseismic moment release at time t n·m

  Mmax
0

   Maximum aseismic moment release for arbitrary 
fluid injections and λr ≫ 1

n·m

  Mmax
w

   Maximum moment magnitude for arbitrary fluid 
injections and λr ≫ 1

–

  N   Prefactor of maximum moment release defined 
in Fig. 5

n·m–7/2

  P(t)   Radial position of the pore pressure back front at 
time t

m

  Q0   constant injection flow rate m3/s

  Qavg   volume- average injection flow rate at the shut- in 
time

m3/s

  Qavg(t)   volume- average injection flow rate at time t  
defined in eq. 28

m3/s

  Ra   Arrested rupture radius (or furthest rupture extent 
along the x axis) in the upper bound model

m

  Rmax   Maximum rupture run- out distance for arbitrary 
fluid injections and λr ≫ 1

m

  Rs   Radius of circular rupture at the shut- in time m

  R(t)   Radius of circular rupture at time t m

  S   Fault zone oedometric storage coefficient Pa−1

  Sν   Prefactor in eq. 5 associated with rupture  
noncircularity

–

  Sshut-in   Prefactor in eq. 5 associated with the shut- in stage –

  r   Residual stress–injection parameter for constant 
injection flow rate defined in eq. 1

–

  r(t)   time- dependent residual stress–injection parameter 
for variable injection flow rate defined in eq. 28

–

  V (t)   cumulative injected fluid volume at time t m3

  Vtot   total fluid volume injected during an injection 
operation

m3

(Continued)
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pressure increase due to fluid injection that continuously reduces fault 
shear strength, thereby releasing potential energy that becomes avail-
able for rupture growth. Its stress scale is frΔp∗, where Δp∗ is the injec-
tion intensity. Injections with faster pressurization are associated with 
increasing values of Δp∗, which can occur, for example, because of a 
higher injection flow rate (Q0) or a lower hydraulic transmissivity 
(kw). The other force is of a resisting kind, which, in the absence of a 
local energy dissipation mechanism such as the fracture energy, cor-
responds to a nonlocal “consumption” of elastic strain energy associ-
ated with the background stress change, Δτr−0. The latter, as displayed 
in Fig. 1D, is defined as the difference between the in situ residual fault 
strength ( frσ�0) and the initial shear stress (τ0). The background stress 
change is strictly positive, or, in other words, the so- called stress drop 
is negative. This is an essential feature of unconditionally stable rup-
tures, which stems from the so- called ultimate stability condition: 
τ0 < frσ

�
0
 (44). The latter ensures fault stability and the development of 

quasi- static slip unconditionally in this regime, as ruptures with a 
positive stress drop will always ultimately transition to a dynamic rup-
ture (25). Intuitively, one expects that as the intensity of the injection 

(Δp∗) increases, the rupture would propagate faster. Conversely, when 
the background stress change (Δτr−0) is higher, it presents greater re-
sistance to rupture growth, slowing down the slip propagation. Hence, 
decreasing r values will always result in faster aseismic ruptures. This 
behavior can be observed in Fig. 2B, where the solution (see Materials 
and Methods) during the injection stage for a circular rupture of ra-
dius R(t) is shown. Here

where λr is the so- called amplification factor given by Sáez et al. 
(23). Notably, their equation 21 applies here, provided that the 
stress- injection parameter is understood as the residual one, r. 
L(t) =

√

4αt is the classical diffusion length scale, also considered as 
the position of the overpressure front (Fig. 1E). Two important 
points must be emphasized. First, the definition of the overpres-
sure front L(t) is only nominal. Strictly speaking, even immedi-
ately after injection begins, the overpressure in our model only 
approaches zero at infinity. More precisely, the overpressure front 
L(t) tracks an isobar of fluid pressure, typically in the order of 1% 

R(t) = λrL(t) (2)
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Fig. 1. Model schematics. (A) Fluid is injected at a constant or arbitrary volumetric rate until the shut- in time ts at which the injection is instantaneously stopped. (B) this 
results in two distinct stages: an injection stage and a shut- in stage. (C) details of the porous fault zone near the fluid source. (D) typical shear stress and fluid overpressure 
distribution along the fault during the injection stage. (E to G) distinct stages of rupture propagation in our upper bound model [see (B) indicating the corresponding 
times as gray circles). (e) crack- like rupture phase during the injection stage. [(F) and (G)] Pulse- like rupture phase during the shut- in stage: first as a ring- like pulse (F) and 
after as two crescent- shaped pulses (G). See the main text for a detailed description of the stages.
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of the pressure at the fluid source at any given time. This definition 
is exact only when the overpressure distribution is self- similar; in 
all other cases, it should be considered an approximation. None-
theless, L(t) is a proxy for the boundaries of the pressurized zone 
resulting from injection. Second, the analytical circular rupture so-
lution for λr as a function of r (Fig. 2B) is strictly valid only when 
Poisson’s ratio ν = 0 (23). This is due to the axisymmetry property of 
the fluid flow problem, which, together with the condition ν = 0, 
results in an energy release rate that is uniform along the rupture 
front (23). Throughout this work, we generally adopt the circular 
rupture approximation to derive purely analytical insights. We, nev-
ertheless, quantify the effect of rupture noncircularity numerically 
via a boundary element–based numerical solver (see Materials 
and Methods).

The analytical solution in Fig. 2B provides important insights into 
the response of our upper bound model. During the injection stage, the 
fault response is characterized by two distinct regimes. When r ∼ 10, 
aseismic ruptures are confined well within the overpressurized region 
(λr ≪ 1), a regime known as marginally pressurized because it relates 
to a scenario in which the fluid injection provides just the minimum 
amount of overpressure that is necessary to activate fault slip (25, 44). 
Conversely, when r ≪ 1, aseismic ruptures break regions much fur-
ther away than the pressurized fault zone (λr ≫ 1). This is the so- called 
nearly unstable regime (25) as when Δτr−0 → 0, the fault approaches 
the so- called ultimate stability condition after which any positive stress 
drop will ultimately lead to a frictional instability.

From a practical standpoint, the nearly unstable regime is the 
most relevant one to derive scaling relations for the maximum rup-
ture size and moment release, as it produces the largest ruptures for 
a given injection. While operators in geo- energy applications typi-
cally maintain good control over fluid injection parameters, in situ 
conditions, such as frictional parameters and the stress state acting 
upon fractures and faults within a reservoir, are subject to consider-
able uncertainties. Given that in situ conditions largely control the 
response of aseismic slip in our model, it is conservative to assume, 
under generally uncertain and somewhat generic conditions in the 
rock mass surrounding a given operation, that the nearly unstable 
regime develops to establish the desired upper limits. Consequently, 

our calculations for the maximum rupture size Rmax and moment 
release Mmax

0
 will be based on this regime. When λr ≫ 1, one can 

derive a relation linking the evolution of the rupture radius to the 
accumulated injected fluid volume [V (t)] and in situ conditions as 
follows (see Materials and Methods)

Furthermore, we demonstrate (see Materials and Methods) that 
Eq. 3 is valid not only for injection at a constant flow rate but also for 
any arbitrary fluid injection as long as the rupture propagates in 
crack- like mode while injecting. Crack- like behavior is a funda-
mental requirement in our model, as this latter assumes that the shear 
stress distribution across the circular sliding region, 0 ≤ r ≤ R(t), 
equals the fault shear strength at any time during the injection stage 
(t ≤ ts). An abrupt drop in fluid pressure, such as that caused by halt-
ing injection, can trigger propagation in a pulse- like mode (24), cre-
ating a region within the reactivated fault surface where the fault 
strength locally exceeds the shear stress. While the precise condi-
tions of the fluid source necessary to ensure crack- like propagation 
remain unknown, this rupture propagation mode is guaranteed when 
the overpressure from fluid injection increases monotonically across 
0 ≤ r ≤ R(t). A specific example is when overpressure remains con-
stant at the fluid source, leading to a sharp rise in injection flow rate, 
followed by a gradual decline over time (23). This example demon-
strates that crack- like behavior can occur even under conditions of 
decreasing flow rate.

Equation 3 implies that as long as the aseismic slip front substan-
tially outpaces the overpressure front (λr ≫ 1), the cumulative in-
jected fluid volume V (t) is the only operational parameter of the 
injection that matters to obtain an upper bound for the rupture size 
during the injection. In practice, asymptotic expressions associated 
with the nearly unstable regime, such as Eq. 3, are expected to pro-
vide good approximations even when λr is close to one. For instance, 
the analytical solution for constant flow rate injection shown in Fig. 
2B indicates that the nearly unstable asymptote approximates the 
exact solution with a relative error of only 8% at λr = 1. Furthermore, 

R(t) = Asitu

√

V (t), with Asitu =

�

fr
2πwSΔτr−0

�1∕2

(3)
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(Marginally pressurized regime)

0
0

Time, t

Constant residual friction
similarity solution

Constant peak
friction similarity
solution

Upper bound

Lower bound

A B

Fig. 2. Upper bound rationale and amplification factor. (A) evolution of the amplification factor λ(t) = R(t) ∕ L(t) for unconditionally stable ruptures in the slip- 
weakening fault model [adapted from figure 9 in (25)] for a constant injection flow rate. R(t) is the rupture radius, and L(t) =

√

4αt is the position of the nominal overpres-
sure front. λr (time independent) is an upper bound for the rupture size at any time during the injection stage. (B) Analytical solution (solid black line; see Materials and 
Methods) for the amplification factor λr in our upper bound model. λr depends uniquely on the residual stress–injection parameter r. Blue and red dashed lines corre-
spond to asymptotic limiting behaviors for marginally pressurized (λr ≪ 1) and nearly unstable (λr ≫ 1) ruptures.
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the prefactor in Eq. 3 is exclusively related to in situ conditions 
(Asitu), highlighting a clear separation between contributions to 
rupture size that are controllable during an operation [V (t)] and 
those that are not (Asitu). This distinction is advantageous for geo- 
energy operators, as it directly relates the controllable parameter 
[V (t)] to the maximum rupture run- out distance from injection 
wells. This distance, in turn, provides a practical estimate of the area 
potentially affected by aseismic slip–induced stress changes and the 
subsequent triggering of earthquakes. Note that along the fault, 
seismicity can be triggered beyond the slip front due to stress am-
plification ahead of the rupture (21). In addition, seismicity may 
occur at greater distances off- fault, such as in regions experienc-
ing positive Coulomb stress changes on adjacent faults (24, 37). 
Therefore, the rupture run- out distance should be understood as 
an order- of- magnitude estimate of the region where earthquake 
triggering might occur.

The in situ factor Asitu reflects clear physical controls on rupture 
size. Equation 3 indicates that a decrease in the background stress 
change (Δτr−0) results in an increase in the rupture radius. The rea-
son behind this behavior is simple, lower background stress varia-
tions reduce the resistance to rupture growth, allowing for larger 
ruptures. For the same reason, higher values of the residual friction 
coefficient ( fr) also augment R. On the other hand, decreasing the 
product between the fault zone width and oedometric storage coef-
ficient (wS), namely, the fault zone storativity, also leads to larger 
ruptures. In this case, the explanation is that wS controls the pres-
surization intensity due to fluid injection that is experienced on av-
erage over the fault- pressurized region. A lower storativity in the 
fault zone naturally implies a higher fluid pressure to accommodate 
a fixed amount of injected volume (see Eq. 20 in the Materials and 
Methods). A higher fluid overpressure decreases fault shear strength, 
therefore increasing the mechanical energy available for rupture 
growth and the corresponding rupture size.

Upon the stop of the fluid injection (t > ts), our upper bound 
model produces ruptures that transition from crack- like to pulse- 
like propagation mode (Fig. 1, E to G). Since we reduced the upper 
bound problem to a fault responding with a constant friction coef-
ficient equal to the residual value fr, we inherit essentially all the 
results obtained recently by Sáez and Lecampion (24) who exten-
sively investigated the propagation and arrest of postinjection aseismic 
slip on a fault with constant friction. In particular, the overpressure 
drops quickly near the fluid source upon stopping the injection, 
while it keeps increasing transiently away from it (Fig. 1, E and F). 
This latter increase in pore pressure further drives the propagation 
of aseismic ruptures after shut- in. As shown in Fig. 1F, slip propa-
gates first as a ring- shaped pulse with a locking front that always 
propagates faster than the rupture front (Fig. 3A). The locking front 
is driven by the continuous depressurization of pore fluids, which 
restrengthens the fault. After and for the more general case of non-
circular ruptures, the pulse splits into two “crescent- shaped” pulses 
(Fig. 1G). This ultimate stage is due to the locking front catching up 
with the rupture front first in the less elongated side of the slipping 
region. For the idealized case of circular ruptures, the crescent- 
shaped pulses are absent because of the axisymmetry property of 
both the fluid flow and shear rupture problems. Figure 3A displays 
the evolution of the locking front B(t) and rupture front R(t) for a 
circular rupture for an exemplifying case with r = 0.15. Slip arrests 
when the locking front catches the rupture front at the time ta (arrest 
time or duration of the slow slip event), resulting in the arrested 

rupture radius Ra. For the more general case of noncircular ruptures, 
the furthest rupture run- out distance from the injection well Ra oc-
curs always along the x axis, which is the direction of maximum 
shear before the injection starts (Fig. 1G). Moreover, the rupture 
front stops when it is caught by the so- called pore pressure back 
front P(t) (24) introduced by Parotidis et al. (46). The pore pressure 
back front tracks the radial distance from the injection well at which 
the pore pressure rate is zero at a given time t , that is, �p∕ �t = 0 at 
r = P(t). Then, the region in which overpressure is decreasing is 
r < P(t), and, conversely, the overpressure is increasing at r > P(t). 
Hence, the moment when the pore pressure back front catches up 
with the rupture front (ta) marks the point at which no additional 
increase in pore pressure within the rupture pulse is available to sus-
tain any further quasi- static slip propagation: a necessary condition 
for rupture arrest (24). Furthermore, this arrest condition leads to 
the following analytical relation between the rupture run- out dis-
tance Ra and the arrest time ta

The arrest condition underpinning the previous equation is, in 
principle, valid for any arbitrary fluid injection. Its mathematical 
form (Eq. 4) is, however, particular to the case of injection at a con-
stant volume rate (24). In the nearly unstable regime (r ≪ 1) and 
for the particular case of circular ruptures, the normalized arrest 
time (Fig. 3C) can be estimated via the following numerically de-
rived asymptotic approximation, ta ∕ ts ≈ a −b

r
, with a = 0.946876 

and b = 1.084361. Moreover, Fig. 3C shows that when ruptures are 
marginally pressurized (r ∼ 10), the slip pulses arrest almost im-
mediately after the injection stops. Conversely, when ruptures are 
nearly unstable (r ≪ 1), the upper bound for the arrest time (ta) is 
predicted to be several orders of magnitude greater than the injec-
tion duration (ts). Rupture noncircularity has the effect of slightly 
increasing the arrest time (Fig. 3C).

To quantify the effect of the shut- in stage in the maximum rup-
ture run- out distance Rmax when λr ≫ 1, we introduce the shut- in 
coefficient Sshut-in equal to the ratio between the rupture radius at the 
time in which a circular rupture arrest, Ra, and the rupture radius at 
the shut- in time, Rs. By dimensional analysis, the shut- in coefficient 
depends only on the residual stress–injection parameter r, whose 
relation is calculated numerically and shown in Fig. 3D. The contri-
bution of the shut- in stage to Rmax is approximately a factor of 2 at 
most when ruptures are very nearly unstable (r ∼ 0.001). Similarly, 
we quantify the effect of rupture noncircularity by introducing the 
coefficient Sν equal to the ratio between the maximum rupture run- 
out distance for noncircular ruptures (ν ≠ 0) and the same quantity 
for the circular case (ν = 0). Again, by dimensional considerations, 
Sν depends only on r for a given ν. This is shown in the inset of Fig. 
3D for the particular case of a Poisson’s solid (ν = 0.25, a common 
approximation for rocks). The effect of Poisson’s ratio is to increase 
the maximum run- out distance of a noncircular rupture by about 6 
to 10% with respect to a circular one, for the same r. We find this to 
be valid over a wide range of practically relevant cases (0.01 ≤ r ≤ 1). 
We conclude that the order of magnitude of Rmax comes directly 
from evaluating R(t) in the analytical solution displayed in Fig. 2B at 
the shut- in time, which, in the regime λr ≫ 1, takes a more insight-
ful expression given by Eq. 3 that is valid for arbitrary fluid injec-
tions provided the rupture propagates in crack- like mode during the 

Ra =

[

4αta

(

ta
ts
−1

)

ln

(

ta
ta− ts

)]1∕2

(4)
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injection stage. Using this latter expression, we can calculate the 
maximum run- out distance when λr ≫ 1 as

where Vtot = V
(

ts
)

 is the total volume of fluid injected during a 
given operation.

Equation 5 has a multiplicative form, thus effectively factorizing 
contributions from the injected fluid volume, in situ conditions, 
shut- in stage, and rupture noncircularity to the maximum rupture 
run- out distance. Note that both Sshut-in and Sν depend on r and, 
thus, also on in situ conditions and parameters of the injection (Eq. 1). 
However, the effect of the in situ conditions and injection protocol 
are for the most part contained in Asitu and Vtot, respectively, which 
can vary over several orders of magnitude. On the contrary, the 
dimensionless coefficients Sshut-in and Sν remain always of order 
one. Sshut-in and Sν are, strictly speaking, defined for constant injec-
tion flow rates. However, for other injection protocols, these coeffi-
cients could be approximately estimated using, for instance, the 
volume- average injection flow rate, Qavg =

(

1∕ts
)

∫
ts
0
Q(t)dt. The 

previous approximation guarantees that the same amount of fluid 
volume is injected over the same injection period ts by both the 
equivalent constant- rate source Qavg and the time- varying arbitrary 
source Q(t).

Maximum moment release and magnitude
To calculate the moment release, we derive analytical upper bounds 
for the spatiotemporal evolution of fault slip during the injection stage, 
for both nearly unstable (λr ≫ 1) and marginally pressurized (λr ≪ 1) 
circular ruptures (see Materials and Methods). Notably, the slip distri-
bution of nearly unstable ruptures is highly concentrated around the 
injection point due to an interior boundary layer associated with the 
fluid injection force at distances r ∼ L(t) (Fig. 3B). Upon integrating 
the analytical slip distributions over the rupture surface, the temporal 
evolution of moment release for a circular rupture is

with the temporal dependence of M0 embedded implicitly in 
R(t) = λrL(t) (Eq. 2), which is known analytically (Fig. 2B). As ex-
pected, the previous asymptotic solutions for M0 match very closely 
the full numerical solution (Fig. 4A). The numerical solution helps 
us to describe the precise transition between the two end members. 
We emphasize that the structure of the scaling for M0 is the one ex-
pected for a circular crack (M0 ∝ R3). However, the prefactors and 
relevant stress scales are specific to the characteristic loading of each 

Rmax = SνSshut-inAsitu

√

Vtot (5)

M0≃

⎧

⎪

⎨

⎪

⎩

16

3
Δτr−0R

3 for nearly unstable ruptures, λr≫1

16

9
frΔp∗R

3 for marginally pressurized ruptures, λr≪1

(6)
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Fig. 3. Upper bound model for unconditionally stable ruptures: dynamics, arrest time, and maximum rupture run- out distance. (A) evolution of fluid-  and slip- 
related fronts, during the entire lifetime of an injection- induced aseismic slip event, for a case with r = 0.15. Front positions F(t) = R(t), B(t), L(t), and P(t) are normalized 
by the rupture radius at the shut- in time, Rs (see main text for a description of the different fronts). (B) Slip distribution for a very nearly unstable rupture (r ≪ 1) at the 
shut- in and arrest times. δc(t) = frΔp∗L(t) ∕μ is the characteristic slip scale in this regime (see Materials and Methods). Slip further accumulates during the shut- in stage 
due to the slip pulse that travels along the fault upon the shut- in of the injection. (C) Upper bound for the arrest time and (D) maximum rupture run- out distance as a 
function of the dimensionless parameter r. in (d), the main plot quantifies the shut- in coefficient Sshut-in = R

(

ta
)

∕Rs for a circular rupture. nearly unstable ruptures can 
grow up to ≈2 times their size at the shut- in time. conversely, marginally pressurized ruptures (r ∼ 10) experience no further growth during the shut- in stage. in the inset, 
the noncircularity coefficient Sν as a function of r for ν = 0.25. Sν shows that over a wide range of practically relevant cases (0.01 ≤ r ≤ 1), the maximum rupture run- out 
distance of a noncircular rupture is about 6 to 10% larger than the one of a circular rupture at same r.
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regime. For instance, in the nearly unstable regime (λr ≫ 1), the 
proper stress scale is the background stress change (Δτr−0), as op-
posed to the injection intensity ( frΔp∗), which is the adequate stress 
scale when λr ≪ 1. This is because, in the nearly unstable regime, 
most of the slipping region experiences a uniform stress variation 
Δτr−0 except for a small region of size ∼ L(t) near the fluid source, 
which undergoes an additional nonuniform stress change due to the 
fluid injection (Fig. 1D). The effect of the fluid injection force is in 
the prefactor 16/3, which is about two times bigger than the one of a 
circular crack with purely uniform stress drop [16/7 when ν = 0.25 
(47) and 8/3 when ν =  0 (48)]. Moreover, in the nearly unstable 
regime, we obtain the following expression for the moment release, 
which is valid for arbitrary fluid injections as long as the rupture 
propagates in crack- like mode during injection (see Materials 
and Methods)

Equation 7 has the same property as Eq. 3, that is, the only op-
erational parameter of the injection controlling the upper bound for 
the moment release in the nearly unstable regime and during the 
injection stage is the cumulative injected fluid volume V (t). Further-
more, the prefactor corresponds as well to in situ conditions (Isitu), 
thus separating contributions to the moment release that are con-
trollable during an operation [V (t)] from those that are not (Isitu). 
This kind of relation for the moment release has been previously 
reported in the literature for the case of regular, fast earthquakes 
(27, 28, 30, 32, 35). In the marginally pressurized regime (λr ≪ 1), 
M0 does not follow an expression as in Eq. 7. By substituting the 
expressions Δp∗ = Q0η∕4πkw, R(t) = λr

√

4αt, and V (t) = Q0t into 
Eq. 6, one can readily show that the moment release for an injec-
tion at a constant flow rate is given by M0(t) = B ⋅ V (t)3∕2, with 
B = (32∕9π)

(

frη∕kw
)

(

λ3
r
α3∕2∕Q

1∕2

0

)

. This implies that in the mar-
ginally pressurized regime, the moment release depends on both the 
current injected volume V (t) (or injection time t) and the injection 
rate Q0 (which is also implicitly in λr). The in situ and operational 
factors cannot be separated as in Eq. 7. This separation is a unique 
characteristic of nearly unstable ruptures, associated with the fact 
that when λr ≫ 1, the effect of the fluid source on the propagation of 
the rupture front is entirely described by an equivalent point force at 
distances r ≫ L(t). The magnitude of this point force is determined 
uniquely by the injected fluid volume, irrespective of any other de-
tails of the fluid injection (see Eq. 23 in Materials and Methods).

The influence of in situ conditions (Isitu) on moment release M0 is 
almost identical to its role in controlling rupture size. Equation 7 
reflects the fact that a decrease in background stress change (Δτr−0) 
represents less opposition for the rupture to growth, thus leading to 
an increase in moment release (and the same is true for a decrease in 
the residual friction coefficient fr). On the other hand, a decrease in 
fault zone storativity (wS) also leads to a larger moment release, as it 
implies a stronger pressurization for a fixed amount of injected flu-
id volume.

During the shut- in stage (t > ts), the propagation and ultimate 
arrest of the aseismic slip pulses result in a further accumulation of 
fault slip (Fig. 3B). The shut- in stage, thus, increases the final, maxi-
mum moment release of the events. Figure 4B displays the evolution 
of this increase for an exemplifying case with r = 0.01. We observe 

that the moment release keeps growing after shut- in very slowly 
(over a timescale that is about 100 times the injection duration) up 
to reaching (at arrest) nearly three times the moment release at the 
time the injection stops [M0

(

ts
)

]. We quantify this effect in the same 
manner as for the maximum rupture run- out distance Rmax, by de-
fining the shut- in coefficient Cshut-in equal to the ratio between 
the moment release at the time in which a circular rupture arrest, 
M0

(

ta
)

, and the moment release at the shut- in time, M0

(

ts
)

. By di-
mensional analysis, the shut- in coefficient depends only on the re-
sidual stress–injection parameter r, whose relation is calculated 
numerically and displayed in Fig. 4C. We observe that M0

(

ta
)

 is at 
most around four times the moment release at the time the injection 
stops in the more nearly unstable cases (smallest values of r). Con-
versely, there is virtually no further accumulation of moment release 
for marginally pressurized ruptures. Similarly, we quantify the effect 
of rupture noncircularity by introducing the coefficient Cν equal to 
the ratio between the moment release at the time of arrest for non-
circular ruptures (ν ≠ 0) and the same quantity for the circular case 
(ν = 0). Again, by dimensional considerations, Cν depends only on 
r for a given ν. This is shown in Fig. 4D for the particular case of a 
Poisson’s solid (ν = 0.25). We observe that over a wide range of prac-
tically relevant cases (0.01 ≤ r ≤ 1), the effect of Poisson’s ratio is to 
reduce the moment release of a noncircular rupture by about 13.8% 
with respect to that of a circular one, for the same r.

With all the previous definitions and calculations, we can lastly 
estimate the maximum moment release associated with the nearly 
unstable regime (λr ≫ 1) as Mmax

0
= Cν ⋅ Cshut-in ⋅M0

(

ts
)

. Equation 
7, which is valid for arbitrary fluid injections, can then be evaluated 
at the shut- in time, leading to the following expression

where Vtot is the total volume of fluid injected during a given opera-
tion. As in Eq. 5, Eq. 8 has a multiplicative structure, thus factorizing 
contributions from the injected fluid volume, in situ conditions, shut- 
in stage, and rupture noncircularity to the maximum moment re-
lease. Here, Cshut-in and Cν depend also on r and, thus, on in situ 
conditions and injection parameters (Eq. 1). However, similar to the 
case of Rmax, since the dimensionless coefficients Cshut-in and Cν al-
ways remain of order one, the order of magnitude of Mmax

0
 is con-

trolled essentially by the in situ factor Isitu and injected volume Vtot. 
Moreover, since Cshut-in and Cν are strictly defined for constant flow 
rate injections, their values for variable injection flow rates Q(t) could 
be again approximated using, for example, the volume- average injec-
tion rate, Qavg =

(

1∕ts
)

∫
ts
0
Q(t)dt.

To calculate the maximum magnitude, we follow the definition 
by Hanks and Kanamori (49): Mmax

w
= 2∕3 ⋅

[

log10
(

Mmax
0

)

−9.1
]

 
(here, in the International System of Units). Substituting Eq. 8 into 
the previous expression leads to the following estimate for the max-
imum magnitude

Because of the multiplicative form of Eq. 8, Eq. 9 takes an addi-
tive form that separates contributions from different factors to the 
maximum magnitude of injection- induced slow slip events. Among 
these factors, rupture noncircularity decreases the magnitude by 
only 0.06. The contribution from the shut- in stage is, on the other 

M0(t) = Isitu ⋅ V (t)3∕2, with Isitu =
16

3(2π)3∕2
1

√

Δτr−0

�

fr
wS

�3∕2

(7)

Mmax
0

= Cν ⋅ Cshut-in ⋅ Isitu ⋅ V
3∕2
tot (8)

M
max
w

= log10
(

Vtot

)

+
2

3

[

log10
(

Isitu

)

+ log10
(

Cshut−in

)

+ log10
(

Cν

)

−9.1
]

(9)
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hand, slightly larger. Since Cshut-in ≈ 4 at most when ruptures are 
very nearly unstable (r ∼ 0.001), the shut- in stage may contribute 
to an increase in the moment magnitude of 0.4 at the maximum. The 
larger contributions to Mmax

w
 are by far the ones associated with in 

situ conditions and the total injected fluid volume. For example, a 
10- fold increase in Vtot gives a magnitude increase of 1.0, while a 
10- fold increase in Isitu results in a magnitude growth of approxi-
mately 0.67. The relative contributions from the subfactors compos-
ing Isitu can be further understood by substituting Eq. 7 into Eq. 9 
and then isolating the in situ term as follows

The more substantial variations in Mmax
w

 come clearly from the 
fault zone storativity (wS) and background stress change (Δτr−0), 
which could vary over several orders of magnitude. For instance, a 
variation of three orders of magnitude in Δτr−0 yields a change of 
magnitude of 1.0, while the same variation in fault zone storativity 
results in a magnitude change of 3.0, highlighting the potentially 
strong effect of wS in Mmax

w
.

Fault zone storativity, background stress change, and 
injected fluid volume: Three key parameters
To test our scaling relations for the maximum rupture run- out dis-
tance Rmax and moment release Mmax

0
, we compiled and produced a 

dataset (see Supplementary Text) with estimates of aseismic mo-
ment release, rupture run- out distance, and injected fluid volumes 
from events that vary in size from laboratory experiments (centimeter- 
to meter- scale ruptures) (50, 51) to industrial applications (hectometer- 
to kilometer- scale ruptures) (3, 4, 10, 21, 52), including in situ 
experiments in shallow natural faults at intermediate scales (meter-  to 
decameter- scale ruptures) (6, 53, 54). The comparison between this 
dataset and our expressions for the maximum moment release 
(Eq. 8) [or magnitude (Eq. 9)] and maximum rupture run- out dis-
tance (Eq. 4) is displayed in Figs. 5 and 6, respectively. We focus 
first on the maximum moment release (Fig. 5). To facilitate the 
comparison against the dataset, we introduce in Fig. 5 the factor 
N = Cν ⋅ Cshut-in ⋅ Isitu, which encapsulates all effects other than the 
injected fluid volume, so that Eq. 8 can be written simply as 
Mmax

0
= N ⋅ V

3∕2
tot . Three different values for N are considered in Fig. 5, 

which collectively form an upper bound for the data across the dif-
ferent volume and moment release scales characterizing the dataset. 
Considering that Cν ≈ 0.862 and that plausible values for the coeffi-
cient Cshut-in range from 1 to 4, the order of magnitude and units of 
N  are determined by the in situ factor (Isitu). This latter, in turn, 
depends on three parameters: the residual friction coefficient fr (with 
a plausible range of 0.4 to 0.8), the background stress change (Δτr−0), 
and the fault zone storativity (wS). The background stress change 
can be at most equal to the amount of shear stress that is necessary 

(2∕3)log10
(

Isitu
)

= log10
(

fr
)

−(1∕3)log10
(

Δτr−0
)

− log10(wS)−0.3135
(10)
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Fig. 4. Upper bound model for the moment release from nucleation to arrest. (A) normalized moment release during the injection stage as a function of the residual 
stress–injection parameter r using the nearly unstable (red; left axis) and marginally pressurized (blue; right axis) scalings. Black dashed lines correspond to asymptotic 
analytical solutions provided in the main text. Solid lines correspond to numerical solutions. (B) evolution of the moment release for a nearly unstable circular rupture 
(r ≪ 1) during and after fluid injection. the moment release increases up to ≈3 times the moment release at the shut- in time in this particular case. (C) Shut- in coefficient 
Cshut-in = M0

(

ta
)

∕M0

(

ts
)

 for a circular rupture as a function of the dimensionless parameter r. nearly unstable ruptures can experience a moment release increment of 
up to ≈4 times during the shut- in stage. conversely, marginally pressurized ruptures (r ∼ 10) are characterized by no increment at all. (D) noncircularity coefficient Cν as 
a function of r for ν = 0.25. the numerical simulations suggest that over a wide range of practically relevant cases (0.01 ≤ r ≤ 1), the moment release of a noncircular 
rupture is about 13.8% smaller than the moment release of a circular rupture (ν = 0) at same r.
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to activate fault slip before the injection starts, Δτp−0 = fpσ
�
0
− τ0, 

in the limiting case in which the weakening of friction is small 
( fr ≈ fp). Its minimum value could be, on the other hand, as small 
(but positive) as possible when the residual fault strength drops 
close to the initial shear stress ( frσ�0 ≈ τ0). This is, as already dis-
cussed, the case that would promote larger ruptures and moment 
release. Δτr−0 could therefore reasonably fluctuate between some 
megapascals and a few kilopascals. The fault zone storativity (wS), 
which is the product between the fault zone width (w) and the oedo-
metric storage coefficient (S), can similarly span several or even many 
orders of magnitude. This variability arises from the wide range of val-
ues observed in fault zone width (55, 56) and the storativity character-
istics of rocks, fractures, and faults (57–60). Estimating wS is quite 
challenging; however, as anticipated by Eq. 10, the fault zone storativity 
could have a strong effect on the maximum magnitude. Hence, we 
conduct a more intricate analysis of representative values for wS within 
our compilation of events.

To do so, we examine the end members of our dataset, namely, 
small- scale laboratory experiments and industrial- scale fluid injec-
tions. Let us first note that in our model, wS can be written in terms 
of generally more accessible quantities as kw∕αη, where kw is the fault 
zone hydraulic transmissivity, η is the fluid dynamic viscosity, and α 
is the fault zone hydraulic diffusivity. At the centimeter scale compos-
ing the smallest aseismic slip events in the dataset, Passelègue et al. 
(50) estimated the hydraulic transmissivity of their saw- cut gra-
nitic fault within 10−17 and 2 × 10−18 m3 and its hydraulic diffusivity 
from 3 × 10−5 to 10−6 m2/s (61), at confining pressures ranging from 
20 to 100 MPa, respectively. Considering a water dynamic viscosity 
at the room temperature the experiments were conducted, η ∼ 10−3 
Pa ⋅ s, we estimate wS to be within 3 × 10−10 and 2 × 10−9 m/Pa (as-
suming that kw and α are positively correlated). Taking into con-
sideration the aforementioned characteristic range of values for fr 
and Δτr−0, we estimate the maximum value for the in situ factor 
that is representative of these laboratory experiments to be roughly 
Isitu ∼ 1012 N ⋅m−7∕2. The upper bound for the moment release re-
sulting from this value of Isitu aligns closely with our estimates of 
moment release and injected fluid volumes for this very same set of 
experiments (Fig. 5, yellow triangles). Note that in Fig. 5, the factor 
N must always be interpreted as being greater than Isitu due to the 
combined effect of the coefficients Cν and Cshut-in. In addition, this 
upper bound seems to explain the centimeter- scale laboratory ex-
periments presented in this study (cyan triangles; see Supplementa-
ry Text) and the meter- scale laboratory experiments of Cebry et al. (51) 
(red triangles) relatively well. The former experiments were carried 
out under almost identical conditions to the ones of Passelègue et al. 
(50), whereas the latter ones were conducted in a similar saw- cut 
granitic fault with hydraulic properties that are close to the ones of 
Passelègue et al.’s (50) fault at the lower confining pressures of this 
latter one.

At the large scale of industrial fluid injections, we consider one of 
the best- documented field cases: the 1993 hydraulic stimulation at 
the Soultz geothermal site in France (3). The hydraulic transmissiv-
ity associated with the 550- m open- hole section stimulated during 
the test has been estimated to experience a 200- fold increase as a 
consequence of the two fluid injections conducted, giving us a pos-
sible range of ~10−14 to 2 × 10−12 m3 (62). However, the smallest 
value of kw represents only the very short, initial part of the in-
jection (62). Therefore, a possible variation between 5 × 10−14 and 

2 × 10−12 m3 seems a more reasonable range to consider within the 
assumptions of our model, which assumes a constant transmissivity. 
On the other hand, the hydraulic diffusivity has substantial uncer-
tainties due to the single- well nature of the hydraulic data in contrast 
to the double- well measurements used, for instance, by Passelègue 
et al. (50) in the laboratory. We consider a range of values for α from 
0.01 to 0.1 m2/s, which is consistent with estimates derived from 
microseismicity migration (46) and aseismic fracture slip (24). As-
suming a water dynamic viscosity of η = 2 × 10−4 Pa ⋅ s, which is rep-
resentative of the temperature conditions within the reservoir (63), 
we estimate wS to fall within the range of 5 × 10−8 to 10−7 m/Pa. 
With these estimates, we calculate a representative maximum value for 
the in situ factor in this field test to be roughly Isitu ∼ 109 N ⋅m−7∕2. 
As shown in Fig. 5, the resulting upper limit aligns very well with the 
field data (circles), providing an effective upper limit for the hecto-
meter to kilometer- scale rupture cases composing the dataset. Fur-
thermore, this simplified, order- of- magnitude analysis suggests that 
the behavior of the upper limit we observe from the laboratory to 
the reservoir scale, namely, the decrease in the factor N  with in-
creasingly larger volume and moment release scales, might be pri-
marily controlled by an increase in fault zone storativity. This 
observation is consistent with the fact that fault zone width (w) 
alone in our dataset varies considerably, ranging from fracture hy-
draulic apertures on the order of tens to hundreds of micrometers in 
the centimeter- scale experimental fault of Passelègue et al. (50) to 
values in field cases that are likely similar to those of some actual 
geological faults, possibly reaching tens to hundreds of meters 
(55, 56). Moreover, the upper limit for intermediate scales (in situ 
experiments; square symbols in Fig. 5) is characterized by a value of N 
(or Isitu) that is approximately in the middle of the values that provide 
an upper limit for the laboratory and field data, suggesting that the 
increase in fault zone storativity with larger scales could be a general 
explanation for the trend observed throughout the entire dataset.

Next, Fig. 6 presents a comparison of our scaling relation for the 
maximum rupture run- out distance (Eq. 5) with the estimated rup-
ture run- out distances for the same injection- induced aseismic slip 
events as in Fig. 5. To facilitate the interpretation, we similarly 
define the factor M = Sν ⋅ Sshut-in ⋅ Asitu accounting for all effects 
other than the injected fluid volume, so that Eq. 5 becomes simply 
Rmax =M

√

Vtot. We plot three values of M in Fig. 6 that collectively 
form an upper bound for the observed data across the varying scales 
of injection volume and rupture run- out distance within the dataset. 
The effects of Δτr−0 and wS are now of similar order, as Rmax scales 
alike with the background stress change, Rmax ∝ Δτ

−1∕2

r−0
, and fault 

zone storativity, Rmax ∝ (wS)−1∕2. Considering the same range of val-
ues for fr, Δτr−0, and wS discussed previously, we calculate a repre-
sentative maximum value for Asitu ∼ 100 m−1/2 for the experiments 
of Passelègue et al. (50) and Asitu ∼ 10 m−1/2 for the Soultz case. As 
shown in Fig. 6, these values are of the same order of magnitude as 
the upper limits (factor M) for the laboratory and field data, respec-
tively. Furthermore, we observe a similar trend to that in Fig. 5: a 
clear scale dependency of the factor M with increasing injection vol-
umes and rupture run- out distances. This scale dependency is pre-
dominantly controlled by in situ conditions (Asitu), particularly fault 
zone storativity (wS).

Last, we emphasize that the values obtained for Asitu are consis-
tent with the λr ≫ 1 regime, which forms the basis of our upper- 
limit scaling relations. During the injection stage, the condition that 
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R(t)≫ L(t) at any time t  can also be expressed as a criterion for the 
variable injection flow rate Q(t). The instantaneous volume- average 
injection flow rate, Qavg(t) = (1∕t) ∫

t

0
Q
(

t�
)

dt�, equal to V (t)∕ t, must 
satisfy (see Eq. 29 in Materials and Methods) the following relation-
ship with in situ conditions

Moreover, at the shut- in time ts, Eq. 11 implies the condition 
Asitu ≫

√

4α∕Qavg , where Qavg = Vtot ∕ ts represents the volume- 
average injection flow rate of a given operation. In the inset of Fig. 6, we 
plot the quantity 

√

4α∕Qavg as a function of fault zone hydraulic diffu-
sivity α for a range of injection flow rates typical of industrial operations 
(depicted as the gray region between the two black solid lines). The red 
dashed line corresponds to a value of Asitu equal to 10 m−1/2, which is 
representative of the upper limit for industrial fluid injections in the 
main plot. The inset confirms that the relationship λr ≫ 1 is satisfied 
for the upper limit of industrial fluid injections shown in both Figs. 6 
and 5, as the value of Isitu in Fig. 5 is derived using the same set of param-
eters. A similar analysis using characteristic values for the labora-
tory data can be conducted with analogous results.

DISCUSSION
Our results provide a rupture mechanics–based estimate for the 
maximum rupture run- out distance, moment release, and magnitude 

of injection- induced slow slip events. Moreover, the dependence 
of our scaling relations on in situ conditions and injected fluid 
volume allows us to explain variations in rupture sizes and moment 
releases resulting from fluid injections that span more than 12 orders 
of magnitude of injected fluid volume. While our scaling relation for 
the maximum aseismic rupture run- out distance is the first of its 
kind, McGarr and Barbour (64) suggested in a prior work that 
for the moment release, the relation for the cumulative moment 
ΣM0 = 2μVtot that was originally proposed by McGarr (28) for regu-
lar earthquakes also accounts for aseismic slips. It is, thus, pertinent 
to discuss their scaling relation in light of our findings.

We first note that in testing their relation, McGarr and Barbour 
(64) incorporated numerous data points of aseismic moment release 
and injected volume into a dataset characterized by otherwise only 
regular earthquakes. All of these aseismic slip events come from 
laboratory experiments of hydraulic fracturing (65), except for one 
single data point that stems from direct measurements of injection- 
induced aseismic slip during an in situ experiment (6). The mechan-
ics of hydraulic fractures (66), however, differs substantially from its 
shear rupture counterpart. The moment release by hydraulic frac-
tures scales linearly with the injected fluid volume, simply because 
the integral of the fracture width over the crack area is equal to the 
fracture volume. The latter is approximately equal to the injected 
volume under common field conditions, namely, negligible fluid 
leak- off and fluid lag (66). In our study, we discarded these hydraulic- 
fracturing data points because they correspond to a different phe-
nomenon. The remaining data point of McGarr and Barbour (64), 
which corresponds to a fluid- driven shear rupture (6), is retained in 

�

Qavg(t) =

�

V (t)

t
≫

√

4α∕Asitu
(11)

Small-scale laboratory experiments (cm scale) (50)

Large-scale laboratory experiments (m scale) (51)

In situ experiment, carbonate fault zone (m to dam scale) (54)

In situ experiments, limestone fault zone (m to dam scale) (6)

In situ experiments, shale fault zone (m to dam scale) (53)

EGS, Rittershoffen, France (hm scale) (52)

Hydraulic fracturing, Alberta, Canada (hm scale) (21)

EGS, Soultz, France (hm to km scale) (3,4)

Hydraulic fracturing, BC, Canada (km scale) (10)

McGarr
(2014)

3
2

Small-scale laboratory experiments (cm scale) - This study

Fig. 5. Comparison of our scaling relation for the maximum magnitude Mmax

w
 with estimates of moment magnitude from injection- induced slow slip events, as 

a function of the total injected fluid volume. We consider three values of the factor N = Cν ⋅ Cshut-in ⋅ Isitu (solid black lines), which collectively form an upper limit for the 
data across different volume and moment release scales. the factor N encapsulates the effects of in situ conditions (Isitu), the shut- in stage (Cshut-in), and rupture noncircular-
ity (Cν). For some events in the dataset, the moment release is estimated within a range that is represented by a vertical line connecting their maximum and minimum 
values. in addition, the data points shown with a dashed perimeter (21, 52) have considerably greater uncertainty in their moment release compared to the rest of the 
dataset (see Supplementary text). Gray dashed lines represent McGarr’s relation (28) for shear moduli of 20 and 30 GPa.
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our dataset albeit with a certain degree of uncertainty based on mo-
ment release estimates provided by more recent studies (see Supple-
mentary Text).

In terms of modeling assumptions, one of the most important 
differences between McGarr’s and ours is that we account for the 
potential for aseismic ruptures to propagate beyond the fluid- 
pressurized region (λr ≫ 1). This regime, which forms the basis 
for our scaling relations for Rmax and Mmax

0
, is not allowed by 

construction in McGarr’s model due to his assumption that any fault 
slip induced by the fluid injection must be confined within the re-
gion where pore fluids have been effectively pressurized because 
of the injection (28). We emphasize that aseismic ruptures break-
ing nonpressurized fault regions are a possibility that always emerg-
es when incorporating rupture physics in a model (44), even in 
the absence of frictional weakening owing simply to long- range 
elastostatic stress transfer effects (20). Moreover, such a regime has 
already been directly observed in laboratory experiments (51) and 
inferred to have occurred during in situ experiments (6, 20) and in-
dustrial fluid injections for reservoir stimulation (21). Furthermore, 
as a natural consequence of incorporating rupture physics in our 
model, we obtain a dependence of the moment release on the back-
ground stress state and fault frictional parameters. McGarr’s model 

is, in contrast, insensitive to these physical quantities, which largely 
control the release of elastic strain energy during rupture propaga-
tion. Another important distinction between the two models is 
that McGarr’s relies uniquely on the capacity of the rock bulk to 
elastically deform and volumetrically shrink to accommodate the 
influx of fluid mass from the injection, unlike our model, which ac-
counts for bulk, fluid, and pore compressibilities within the fault 
zone via the so- called oedometric storage coefficient S (43).

Despite the substantial differences between the two models, it is 
pertinent to compare McGarr’s relation for the moment release with 
our compiled dataset. By doing so, we observe that McGarr’s upper 
bound can explain the majority of the data points, albeit with one 
very important exception (Fig. 5): the 2017 Mw 5.0 slow slip event in 
western Canada (10); the largest event detected thus far. Specifically, 
McGarr’s formula fails by predicting a maximum magnitude of 4.4 
[considering Vtot = 88,473 m3 and assuming a shear modulus of 
30 GPa (10)]. This magnitude is equivalent to predicting an upper 
limit for the moment release that is 16 times smaller than the actual 
moment that was inferred geodetically (10). This underestimation is 
somewhat similar to that performed by McGarr’s formula in the 
case of regular earthquakes: for instance, when considering the 2017 
Mw 5.5 Pohang earthquake in South Korea (15). Our scaling relation 

1
2

Small-scale laboratory experiments (cm scale) (50)

Large-scale laboratory experiments (m scale) (51)

In situ experiment, carbonate fault zone (m to dam scale) (54)

In situ experiments, limestone fault zone (m to dam scale) (6)

In situ experiments, shale fault zone (m to dam scale) (53)

EGS, Rittershoffen, France (hm scale) (52)

Hydraulic fracturing, Alberta, Canada (hm scale) (21)

EGS, Soultz, France (hm to km scale) (3,4)

Hydraulic fracturing, BC, Canada (km scale) (10)

Small-scale laboratory experiments (cm scale) - This study

Fig. 6. Comparison of our scaling relation for the maximum rupture run- out distance R
max

 with estimates of rupture extent from injection- induced slow slip 
events, as a function of the total injected fluid volume. the events in this figure are the same as in Fig. 5. We consider three values of the factor M = Sν ⋅ Sshut-in ⋅ Asitu 
(solid black lines), which, together, form an upper limit for the data across different volume and rupture run- out distance scales. the factor M encapsulates the effects of 
in situ conditions (Asitu), the shut- in stage (Sshut-in), and rupture noncircularity (Sν). likewise in Fig. 5, for some events, the rupture extent is estimated within a range that is 
represented by a vertical line connecting their maximum and minimum values. in addition, the data points shown with a dashed perimeter (21, 52) have considerably 

greater uncertainty in their rupture extent compared to the rest of the dataset (see Supplementary text). in the inset, the quantity 
√

4α∕Qavg  is plotted as a function of 

fault zone hydraulic diffusivity α across a range of injection flow rates typical of industrial operations (represented by the gray region between the two solid black lines). 

An in situ factor Asitu of 10 m–1/2 (dashed red line), representative of the upper limit for industrial fluid injections in the main plot, satisfies the condition Asitu ≫

√

4α∕Qavg  

over a wide range of practically relevant scenarios. this demonstrates (see main text for a detailed discussion) that the upper limit is consistent with the nearly unstable 
regime (λr ≫ 1) underlying the scaling relations for Rmax and Mmax

w
.
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can, conversely, explain the Mw 5.0 slow slip event in Canada and, 
more generally, our entire compilation of events by accounting for 
variations in in situ conditions such as the background stress change 
(Δτr−0) and fault zone storativity (wS). Note that from a “data- 
fitting” perspective, the dependence of our model on wS and Δτr−0 
introduces additional degrees of freedom compared to McGarr’s 
formula, which depends only on the injected fluid volume and the 
shear modulus, a parameter that has very little variation in practice.

Our estimates of the maximum rupture run- out distance and 
magnitude for slow slip events may be regarded, to some extent, as 
an aseismic counterpart of the also rupture mechanics–based scal-
ing relation proposed by Galis et al. (32) for regular earthquakes. 
Although we are describing a fundamentally different process here, 
the two scaling relations share the same 3/2–power law dependence 
on the injected fluid volume. This equal exponent arises from the 
similarities between the competing forces driving both slow slip 
events and dynamic ruptures in each model, namely, a point force 
load due to fluid injection and a uniform stress change behind the 
cohesive zone and within the ruptured fault area. In the model of 
Galis et al. (32), a point force–like load is imposed to nucleate an 
earthquake. In our model, it is the natural asymptotic form that the 
equivalent force associated with the fluid injection takes in the re-
gime that produces the largest ruptures for a given injection (λr ≫ 1), 
which forms the basis for our scaling relations for Rmax and Mmax

0
. 

Note that the two models differ in their storativity- like quantity. As 
we discussed before, we account for the capacity of the fluid, pore 
space, and bulk material in the fault zone to store pressurized fluids. 
In contrast, the model of Galis et al. (32) accounts only for the ca-
pacity of the bulk material: a property they inherited from McGarr’s 
model (28). A revision of seismic scaling relations may be required 
to include the notion of a more general storativity term, particularly 
considering the great variability in pore compressibility observed in 
practice (57–60), which can sometimes dominate over bulk and 
fluid compressibilities. Another important difference with the mod-
el of Galis et al. (32) is the uniform variation of background stress, 
which, in their model, is the so- called stress drop Δτ0−r = τ0 − frσ

�
0
, 

whereas, in our case, it corresponds to the same quantity but of op-
posite sign, Δτr−0 = frσ

�
0
− τ0 (see Fig. 1D). Conceptually, this is a 

very important difference. In our model based on unconditionally 
stable ruptures, the stress drop is negative. We emphasize that the 
conditions leading to a negative stress drop and consequently to un-
conditionally stable slip are not solely restricted to faults with rela-
tively low prestress (τ0) and/or those misaligned with the local in 
situ stress field. Frictional rheology can independently play an im-
portant role. For instance, empirically derived rate- and- state friction 
laws [(67) and references therein] suggest that even faults with high 
prestress and/or favorable orientations relative to the in situ stress field 
may exhibit negative stress drops due to rate- strengthening behavior.

The previous point brings us to an important issue: We consid-
ered only one of the two possible modes of aseismic slip, namely, 
fault ruptures that are unconditionally stable. However, injection- 
induced aseismic slip can also be the result of conditionally stable 
slip, that is, the nucleation phase preceding an otherwise dynamic 
rupture. The principal factor determining whether aseismic slip will 
develop in one way or the other is the so- called ultimate stability 
condition (25, 44), which relates simply to the sign of the stress drop. 
For conditionally stable slip to occur, the initial shear stress must 
therefore be greater than the background residual fault strength 
(Δτ0−r = τ0 − frσ

�
0
> 0), resulting in a positive stress drop. In 

general, we cannot rule out that the points in the dataset of Figs. 5 
and 6 correspond to either conditionally stable or unconditionally 
stable slip, as estimating the background stress state and fault fric-
tional properties that are representative of the reactivated fault in 
the data remains extremely challenging. There is, nevertheless, at 
least one case in the dataset in which aseismic slip is, as a matter of 
fact, conditionally stable. These are the two aseismic slip events 
from the meter- scale laboratory experiments of Cebry et al. (51), 
which preceded seismic ruptures that broke the entire fault interface 
sample (see Supplementary Text). The scaling relations resulting 
from this mode of aseismic slip are therefore important and should 
be addressed in future studies.

Our model aimed to capture the most essential physical ingredients 
of unconditionally stable ruptures to provide the desired theoretical in-
sights into the physical mechanisms controlling the maximum rupture 
run- out distance and magnitude of injection- induced slow slip events. 
To achieve this, we, however, adopted several simplifying assump-
tions that warrant further investigation. In particular, our model 
does not account for fluid leak- off from the permeable fault zone to 
the host rock nor for permeability enhancements associated with 
fault slip and/or the reduction of effective normal stress due to fluid 
injection. Despite these simplifications, we expect our scaling rela-
tions for Rmax and Mmax

0
, which are based on the so- called nearly 

unstable regime (λr ≫ 1), to still provide an effective upper limit 
with regard to these additional factors. We think that incorporating 
a permeable host rock would notably decrease the injection over-
pressure in the fault zone compared to the impermeable case, thus 
decelerating rupture growth. The effect of slip- induced dilatan-
cy, which is relatively well established (68, 69), would introduce 
a toughening effect that would similarly slow down slip propagation 
from a fracture- mechanics perspective. Furthermore, as shown re-
cently by Dunham (69), permeability enhancements due to both 
dilatancy and reduced effective normal stress are expected to be in-
consequential in the regime λr ≫ 1, which is the relevant one for 
establishing our scaling relations for the maximum rupture run- out 
distance and moment release. This is due to the fact that, in this re-
gime, most of the slipping region remains nonpressurized except for 
a small area near the fluid source. The strength of this small (point 
force–like) region remains unchanged in our model, provided that 
the enhanced hydraulic properties are considered as the constant 
ones (69). It is, however, important to highlight that in the so- called 
marginally pressurized regime (λr ≪ 1), recent findings by Dunham 
(69) suggest that a model assuming constant permeability and zero 
fracture energy does not necessarily provide an upper bound for the 
rupture size during the injection stage. This is particularly true in 
scenarios characterized by a strong permeability contrast between 
the initial permeability and the enhanced permeability within the 
slipping region. As Dunham (69) explains, a strong permeability en-
hancement confines fluid flow almost entirely within the sliding region. 
This, in turn, leads to additional pressurization during injection 
that accelerates the aseismic rupture compared to scenarios with 
no permeability changes. Last, another simplification in our model 
is the consideration of a single fault zone. Although this might likely 
be the case for the majority of the events incorporated in our dataset 
(6, 10, 21, 50–54), in some cases, a network of fractures or faults 
could be reactivated instead (3, 63). Recent numerical modeling 
studies on injection- induced aseismic slip have, however, shown 
that approximately the same scaling relation for the moment release 
predicted for a single fracture in two dimensions emerges collectively 
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for a set of reactivated fractures belonging to a two- dimensional dis-
crete fracture network (45). This is notably the case when the regime 
λr ≫ 1 is reached in a global, fracture- network sense. However, the 
generality and prevalence of this finding in three dimensions remain 
to be confirmed.

We notably showed that in the nearly unstable regime (λr ≫ 1), 
the dynamics of the rupture expansion in our upper bound configu-
ration are controlled uniquely by the history of injected fluid volume, 
irrespective of any other characteristic of the injection protocol. The 
implications of this finding may go well beyond the ones explored in 
this work. For example, in hydraulic stimulation operations for the 
development of deep geothermal energy, microseismicity clouds, 
which often accompany fluid injections, are commonly used to con-
strain the areas of the reservoir that have been effectively stimulated. 
If aseismic- slip stress transfer is a dominant mechanism in the trig-
gering of microseismicity, then our model suggests that these seismicity 
clouds may contain important information about the preinjection 
stress state and fault frictional properties, which are embedded in 
the factor Asitu (Eq. 3). Moreover, if the effect of the fracture energy 
on rupture propagation can be approximately neglected in compari-
son to the other two competing forces driving aseismic ruptures in 
our model, that is, the background stress change and fluid injection 
force, then our results imply that the spatiotemporal patterns of seis-
micity migration might be deeply connected to injection protocols 
via the dependence of the aseismic slip front dynamics on the square 
root of the cumulative injected fluid volume. This could be used, for 
instance, to identify from injection- induced seismicity catalogs under 
what conditions aseismic slip stress transfer may become a potentially 
dominant triggering mechanism due to this unique spatiotemporal 
footprint, which differs notably from the ones emerging from other 
triggering mechanisms such as pore pressure diffusion and poro-
elastic stressing (70, 71). Similarly, our model could potentially be 
applied to the study of natural seismic swarms, where fluid flow and 
aseismic slip processes are sometimes thought to be the driving 
forces behind their observed dynamics (72, 73). Last, our model 
could also be used to understand slow slip events occurring at tec-
tonic plate boundaries in many subduction zones worldwide. The 
fundamental mechanics of slow slip events remains debated (74), 
yet multiple recent observations suggest that their onset and arrest 
might be spatially and temporally correlated with transients in pore- 
fluid pressure (75–77).

Last, we emphasize that our investigation has focused on con-
straining the rupture size and moment release of purely aseismic 
injection- induced ruptures. However, in some instances, seismic or 
microseismic events may release a substantial portion of the elastic 
strain energy stored in the medium. In this study, we incorporated 
in our compilation of events only cases where the seismic contribu-
tion to the moment release is thought to be orders of magnitude 
smaller than the aseismic part. From a mechanics perspective, 
this aimed to exclude events where the stress transfer from fric-
tional instabilities could considerably influence the dynamics of 
the slow rupture under consideration, thereby ensuring a robust 
comparison between the data and the scaling relations of our mod-
el. Future studies should therefore focus on understanding what 
physical factors govern the partitioning between aseismic and 
seismic slips during injection operations. Our work, in this sense, 
contributes to this possibility by providing an upper limit to the 
previously unexplored aseismic end- member. Together with prior 
works on purely seismic ruptures, we believe that this offers a 

starting point to examine slip partitioning during injection- induced 
fault slip sequences: a crucial step toward advancing our physical 
understanding of the seismogenic behavior of reactivated faults and 
the associated seismic hazard.

MATERIALS AND METHODS
Time- dependent upper bound model for unconditionally 
stable ruptures driven by injection at a constant flow rate
We define the axisymmetric overpressure due to the injection as 
Δp(r, t) = p(r, t) − p0, with p0 as the uniform background pore 
pressure. During the injection stage (t ≤ ts), the overpressure is 
given by Δp(r, t) = Δp∗ ⋅ E1

(

r2∕4αt
)

 for an injection at constant 
flow rate Q0 (78), where Δp∗ = Q0η∕4πkw is the intensity of the 
injection with units of pressure, α is the fault hydraulic diffusivity, η 
is the fluid dynamic viscosity, the product kw is the so- called fault 
hydraulic transmissivity, and E1 is the exponential integral func-
tion. The fracture- mechanics energy balance for a quasi- static cir-
cular rupture propagating on a slip- weakening fault was presented 
in (25) (equation 14 therein). In our upper bound configuration 
here, neglecting the fracture energy spent during rupture propaga-
tion implies that the stress intensity factor due to injection over-
pressure, Kp, must equal the stress intensity factor due to the 
uniform background stress change, Kτ. This can be written as the 
following expression describing the evolution of the rupture radius 
R with time

where Δτr−0 = frσ
�
0
− τ0 is the background stress change. In Eq. 12, 

the integral term of the left- hand side is the stress intensity factor as-
sociated with an influx of potential energy toward the rupture front, 
which becomes available for the rupture to grow owing to the sole 
effect of overpressure due to the injection. Conversely, the term of 
the right- hand side is the stress intensity factor due to the back-
ground stress change, which is responsible alone for resisting rup-
ture advancement. Nondimensionalization of Eq. 12 shows that 
the competition between the two energy terms is quantified by a 
single dimensionless number, the so- called residual stress–injection 
parameter r = Δτr−0 ∕ frΔp∗, introduced first in (25). Moreover, 
Eq. 12 admits analytical solution in the form: R(t) = λrL(t) (23), 
with the asymptotes λr ≃ 1∕

√

2r  for nearly unstable ruptures 
(λr ≫ 1, r ≪ 1), and λr ≃ e(2−γ−r)∕2 ∕2 for marginally pressurized 
ruptures (λr ≪ 1, r ∼ 10). To highlight how important it is to ana-
lyze the end- member cases of nearly unstable (λr ≫ 1) and margin-
ally pressurized (λr ≪ 1) ruptures throughout this work, we refer to 
their asymptotes for λr plotted in Fig. 2B, which nearly overlap 
and, thus, quantify together almost any rupture scenario. The 
analytical solution for λr [equation 21 in (23); black solid line in 
Fig. 2B] was first derived by Sáez et al. (23) for a fault interface 
with a constant friction coefficient. Here, in our upper bound 
configuration, the mathematical solution is identical to the one 
presented in (23), provided that the constant friction coefficient f  
in (23) is understood as the residual value fr of the slip- weakening 
friction law.

To link the evolution of the rupture radius R(t) and the injected 
fluid volume V (t) in the nearly unstable regime (λr ≫ 1), we use 

Kp=Kτ⇔
2
√

π

frΔp∗
√

R(t)

R(t)

∫
0

E1
�

r2∕4αt
�

√

R(t)2− r2
rdr=

2
√

π
Δτr−0

√

R(t) (12)
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the asymptote R(t) ≃
�

1∕
√

2r

�

L(t) in combination with the fol-
lowing expressions for the residual stress–injection parameter 
r = Δτr−0 ∕ frΔp∗, overpressure intensity Δp∗ = Q0η∕4πkw, over-
pressure front L(t) =

√

4αt, hydraulic diffusivity α = k∕Sη, and in-
jected fluid volume V (t) = Q0t. By doing so, we arrive at Eq. 3. For 
noncircular ruptures (ν ≠ 0), building upon the work of Sáez et al. 
(23) for a constant friction coefficient, we obtain that the rupture 
front of our upper bound model is well approximated by an elliptical 
shape that becomes more elongated for increasing values of ν and 
decreasing values of r, with a maximum aspect ratio of 1∕(1−ν) 
when r ≪ 1 and a minimum aspect ratio of (3−ν)∕(3−2ν) when 
r ∼ 10. Other features of Sáez et al.’s model (23) such as the invari-
ance of the rupture area with regard to Poisson’s ratio and the nu-
merically derived asymptotes for the quasi- elliptical fronts are also 
inherited here in the upper bound model. In the shut- in stage 
(t > ts), the overpressure is obtained by superposition simply as 
Δp(r, t) = Δp∗ ⋅

[

E1
(

r2∕4αt
)

−E1
(

r2∕4α
(

t− ts
))]

. The spatiotempo-
ral evolution of overpressure has been studied in detail in (24). 
Moreover, as discussed in the “Physical model and upper bound ra-
tionale for unconditionally stable ruptures” section, we reduce the 
upper bound model in the shut- in stage to a fault responding with a 
constant friction coefficient equal to fr. Hence, our upper bound 
model inherits all the results obtained by Sáez and Lecampion (24) 
who investigated extensively the propagation and arrest of postin-
jection aseismic slip on a fault obeying a constant friction coeffi-
cient. In particular, we take advantage of their understanding of the 
propagation and arrest of the slip front that ultimately determines 
the maximum size of unconditionally stable ruptures in our upper 
bound model. In the present work, we have expanded the work of 
Sáez and Lecampion (24) to account for an examination of the pre-
viously unknown evolution of the moment release during the shut- 
in stage (Fig. 4).

Asymptotics of moment release for nearly unstable and 
marginally pressurized circular ruptures driven by injection 
at a constant flow rate
The scalar moment release M0 at a given time t  is given by (79)

where μ is the bulk shear modulus, δ is the current slip distribution, 
and Ar is the current rupture area. To calculate the time- dependent 
slip distribution in the circular rupture case, we consider the quasi- 
static relation between fault slip δ and the associated elastic change 
of shear stress Δτ within an axisymmetric circular shear crack (80)

where r = r ∕R(t) is the normalized radial coordinate. Equation 14 
was originally derived for an internally pressurized tensile circular 
crack with axisymmetric load (80). Nevertheless, under the assump-
tions of unidirectional slip with axisymmetric magnitude and a 
Poisson’s ratio ν = 0, the shear crack problem is mathematically 
equivalent on the fault plane to its tensile counterpart (20): crack 
opening being δ and crack- normal stress change being Δτ. In the 

limiting regime of a rupture propagating with zero fracture energy 
and at the residual friction level fr, the change of shear stress is simply

where Δτr−0 = frσ
�
0
− τ0 is the background stress change. Hence, for 

injection at a constant volumetric rate Q0, the spatiotemporal evolu-
tion of slip for the end- member cases of nearly unstable (λr ≫ 1) 
and marginally pressurized (λr ≪ 1) ruptures turn out to be iden-
tical to the ones determined by Sáez et al. (23) for their so- called 
critically stressed regime [equation 26 in (23)] and marginally pres-
surized regime [equation 25 in (23)], respectively, as long as we in-
terpret their constant friction coefficient f  as fr. Here, we write 
the resulting self- similar slip profiles in a more convenient dimen-
sionless form

and

Note that in the nearly unstable regime (λr ≫ 1), we recast equation 26 
in (23) using the expressions L(t) = R(t)∕λr and λr ≃ 1∕

√

2r. The 
nearly unstable asymptote for fault slip is plotted in Fig. 3B and 
compared to the numerical solution.

Integration of the self- similar slip profiles via Eq. 13 leads to 
the asymptotes for the moment release during the injection stage 
given in the “Maximum moment release and magnitude” section: 
M0(t)=(16∕3)Δτr−0R(t)

3 when λr≫1, and M0(t)=(16∕9)frΔp∗R(t)
3 

when λr ≪ 1. It is worth mentioning that the slip distribution of 
nearly unstable ruptures has a singularity (of order 1∕r) at r = 0. 
Strictly speaking, this asymptote corresponds to the solution of the 
so- called outer problem, which is defined at distances r ≫ L(t). 
An interior boundary layer must be resolved at distances r ∼ L(t) 
to obtain the finite slip at the injection point, which scales as 
δc(t) = frΔp∗L(t)∕μ (see Fig. 3B) (23). Nevertheless, this boundary 
layer has no consequences in estimating the moment release. The inte-
grand in Eq. 13 for such a slip distribution is nonsingular so that after 
taking the limit L(t)∕R(t)→ 0, one effectively recovers the actual 
asymptote for the moment release. The details of the interior bound-
ary layer are therefore irrelevant to the calculation of M0 in this limit.

Relation between fluid injection force and injected fluid 
volume for arbitrary fluid sources
Under the assumptions of our model, the displacement field u in-
duced by the fluid injection into the poroelastic fault zone is irrota-
tional ∇ × u = 0 (41). Therefore, the variation in fluid content ζ, 
which corresponds to the change of fluid volume per unit volume of 
porous material with respect to an initial state (here, t = 0), satisfies 
the following constitutive relation with the pore- fluid overpressure 
Δp [equation 96 in (42)]

where S is the so- called oedometric storage coefficient representing 
the variation of fluid content caused by a unit pore pressure change 
under uniaxial strain and constant normal stress in the direction of 

M0(t) = μ
∬Ar(t)

δ
(

x, y, t
)

dxdy (13)

δ(r, t)=
4R(t)

πμ

1

∫
r

ξdξ
�

ξ2− r2

1

∫
0

Δτ
�

sξR(t), t
�

sds
√

1− s2
(14)

Δτ(r, t) = τ0 − fr
[

σ�
0
−Δp(r, t)

]

= frΔp(r, t) − Δτr−0 (15)

δ(r, t)∕δ∗(t)=D
[

r∕R(t)
]

, with δ∗(t)=

{

Δτr−0R(t)∕μ when λr≫1

frΔp∗R(t)∕μ when λr≪1

(16)

D(x)=

⎧

⎪

⎨

⎪

⎩

(4∕π)
�

arccos(x)∕x−
√

1−x2
�

when λr≫1

(8∕π)
�
√

1−x2−x ⋅arccos(x)
�

when λr≪1

(17)

ζ = SΔp (18)
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the strain (43), here, the z axis (Fig. 1C). S accounts for the effects of 
fluid, pore, and bulk compressibilities of the fault zone and is 
equal to (42)

where M is the Biot’s modulus and b is the Biot’s coefficient.
To obtain the cumulative injected fluid volume at a given time, 

V (t), we just sum up changes in fluid volume all over the spatial 
domain of interest, say Ω, at a given time t , that is, V (t) = ∫

Ω
ζdΩ. In 

our model, the fluid flow problem is axisymmetric, and the fault 
zone width w is uniform, such that the differential of the volume is 
simply dΩ = 2πwrdr in cylindrical coordinates. With these defini-
tions, we can now integrate (Eq. 18) over the entire fault zone vol-
ume to obtain the following expression for the injected fluid volume 
valid for an arbitrary fluid injection

By defining the normal force induced by the fluid injection over 
the slip surface (simply equal to the integral of the overpressure over 
the fault plane) as

we arrive at the following relation between the fluid injection force 
and injected fluid volume

Expressions of a similar kind to Eq. 22 have been reported in 
previous studies (28, 81, 82). For example, McGarr (28) considered 
a similar relation except that his storativity- like term is the inverse of 
the elastic bulk modulus. Garagash (82) also proposed a similar ex-
pression to Eq. 22 but accounting only for pore compressibility. Last, 
the relation considered by Shapiro et al. (81) is the closest to our 
expression, including the oedometric storage coefficient.

Evolution of rupture radius and moment release for nearly 
unstable circular ruptures driven by arbitrary fluid injections
As discussed in the “Dynamics of unconditionally stable ruptures 
and maximum rupture run- out distance” section, nearly unstable 
ruptures (λr ≫ 1) produce the largest events for a given injection, 
making them the natural basis for calculating the maximum rup-
ture size Rmax and moment release Mmax

0
. Here, we generalize the 

relations for the rupture radius R(t) and moment release M0(t) of 
nearly unstable circular ruptures with the injected fluid volume 
V (t), Eqs. 3 and 7, respectively, to account for arbitrary fluid in-
jections during the injection stage. Let us first note that the reduc-
tion of fault strength due to fluid injection in the so- called outer 
problem [r ≫ L(t)] can be effectively approximated as a point 
force [e.g., (23, 44)]

where F(t) is the fluid injection normal force (Eq. 21), which is re-
lated to the cumulative injected fluid volume via Eq. 22. Substituting 

Eq. 23 into the stress change (Eq. 15) and then the latter into the 
double integral representing the quasi- static elastic equilibrium (Eq. 
14), we obtain, upon evaluating those integrals, an asymptotic upper 
bound for the spatiotemporal evolution of fault slip as

Note that Eqs. 22 and 23 are valid for fluid injections that are 
entirely arbitrary. However, by substituting the stress change (Eq. 
15) into the elastic equilibrium (Eq. 14), we assumed that the shear 
stress in the sliding region, 0 ≤ r ≤ R(t), equals the fault shear 
strength at any time t . That is, we assumed crack- like propagation. 
This is the reason why the degree of arbitrariness of the fluid injec-
tion is associated with maintaining crack- like behavior during the 
injection stage. In the shut- in stage, we account for the dynamics of 
pulse- like ruptures that emerge upon stopping the injection for the 
particular case of injection at a constant flow rate. However, during 
injection, the variable injection flow rate must be such that a transi-
tion from crack- like to pulse- like rupture is prevented. The neces-
sary and sufficient conditions for the fluid source to produce a pulse 
are currently unknown.

The propagation condition for a rupture with negligible fracture 
energy is given by Eq. 12. This condition can be alternatively written 
in terms of the slip behavior near the rupture front as (83)

The previous equation imposes a constraint on the slip distribu-
tion (Eq. 24) that can be also seen, in a limiting sense, as eliminating 
any stress singularity at the rupture front. By differentiating Eq. 24 
with respect to r and then applying the propagation condition (Eq. 
25), we obtain the following relation, which is valid for arbitrary 
fluid injections as long as crack- like propagation holds

Equation 26 is identical to Eq. 3, R(t) = Asitu

√

V (t) in the “Dy-
namics of unconditionally stable ruptures and maximum rupture 
run- out distance” section. The latter was originally derived for 
injection at a constant flow rate. It, thus, represents a generaliza-
tion of the relation between the evolution of the rupture radius 
and the cumulative injected fluid volume (Eq. 3) for arbitrary 
fluid injections.

Furthermore, Eq. 26 can be recast to use the so- called stress- 
injection parameter, extensively used in prior works for injection at 
constant flow rate (23–25). Let us define a time- dependent amplifi-
cation factor for a frictional rupture with zero fracture energy and 
variable injection flow rate, λr(t) = R(t)∕L(t) and the instantaneous 
volume- average flow rate of an injection

Combining Eqs. 26 and 27, together with L(t) =
√

4αt and the 
oedometric storage coefficient written as S = k∕ηα, we obtain the 
following expression for the time- dependent amplification factor

S =
1

M
+

b2(1−2ν)

2(1−ν)μ
(19)

V (t) = wS ⋅ 2π

∞

∫
0

Δp(r, t)rdr (20)

F(t) = 2π

∞

∫
0

Δp(r, t)rdr (21)

F(t) =
V (t)

wS
(22)

frΔp(r, t) ≈ frF(t)
δdirac(r)

2πr
= fr

V (t)

wS

δdirac(r)

2πr
(23)

δ(r, t)=
4

π

Δτr−0

μ
R(t)

[

frV (t)

2πwSΔτr−0

arccos(r∕R(t))

r ⋅R(t)
−

√

1−(r∕R(t))2
]

(24)

lim
r→R(t)−

�δ(r, t)

�r

√

R(t) − r = 0 (25)

R(t) =

√

frV (t)

2πwSΔτr−0
(26)

Qavg(t) =
1

t

t

∫
0

Q
(

t�
)

dt� =
V (t)

t
(27)
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Equation 28, thus, generalizes the asymptotic solution for nearly 
unstable ruptures driven by constant injection flow rates, λr = 1∕

√

2r 
(Fig. 2B and see Eq. 1 for the definition of r for constant flow rate), 
to account for arbitrary fluid injection scenarios. While retaining 
the same structure, this generalized solution incorporates the in-
stantaneous volume- average injection flow rate (Eq. 27) as the relevant 
flow rate of the problem, resulting in a time- dependent overpressure 
intensity Δp∗(t) and a time- dependent residual stress–injection pa-
rameter r(t). For the specific case of constant injection flow rate 
Q(t) = Q0, Eq. 28 effectively reduces to the solution found in (23), 
now recognized as a particular example of a broader class of asymp-
totic solutions for λr ≫ 1 and zero fracture energy.

Now, it is entirely possible that, for a variable injection flow rate Q(t), 
the condition characterizing nearly unstable ruptures, R(t)≫ L(t), may 
not be satisfied at a given time t . To apply Eqs. 26 and 28, it is es-
sential to verify that the time- dependent residual stress–injection 
parameter, r(t), remains sufficiently small [r(t)≪ 1]. In practice, 
however, the nearly unstable asymptotic solution provides a some-
what reliable approximation of the slip front position, even when 
λr(t) approaches unity. For instance, the analytical solution for con-
stant flow rate injection shown in Fig. 2B illustrates that, at λr = 1, 
the asymptote for λr ≫ 1 approximates the exact solution with a 
relative error of only 8%. This suggests that Eqs. 26 and 28 may be 
useful even when r(t) ∼ 0.5.

Moreover, the condition r(t)≪ 1 can be reformulated into a 
more practical constraint on fluid injection, which can be expressed 
in terms of in situ conditions as follows

with Asitu defined in Eq. 3. This is the reasoning behind Eq. 11.
Note that Eq. 26 (and, thus, Eq. 28) can be alternatively derived 

through the rupture propagation condition imposed over the stress 
change (Eq. 12). It only takes to replace the particular overpressure solu-
tion for injection at a constant volumetric rate, Δp(r, t) = Δp∗E1

(

r2∕4αt
)

, 
by the more general point force representation in the nearly unstable re-
gime (Eq. 23). Here, we report the derivation based on the slip distribu-
tion because it makes now the calculation of the moment release for 
arbitrary fluid injections straightforward. By substituting Eq. 26 into 
Eq. 24, we obtain the slip distribution satisfying the zero fracture energy 
condition. Upon integrating the resulting slip profile via Eq. 13, we 
obtain the following expression for the moment release

which is identical to Eq. 7, thus demonstrating that the relation be-
tween the moment release, in situ conditions (Isitu), and injected 
fluid volume (Eq. 7) holds for arbitrary fluid injections.

Last, we note a relevant assumption underlying the upper bound 
rationale of our model, which relies on the following property of 
unconditionally stable ruptures: The effect of the fracture energy in 
the front- localized energy balance must diminish as the rupture grows 

and, ultimately, become negligible (25). Although this is certainly 
valid even in the case of arbitrary fluid injections, it relies on an 
implicit assumption of the slip- weakening model, namely, the frac-
ture energy being constant. Our theoretical framework allowed, in 
principle, to account for nonconstant and nonuniform fracture 
energy. We do not account for fracture energy heterogeneity for 
the same reason that we do not account for stress or other kinds of 
heterogeneities in our model: We aim to provide fundamental, first- 
order insights into the problem at hand. Moreover, we also do not 
consider a possible scale dependence of the fracture energy. The scale 
dependency of fracture energy for seismic ruptures is a topic of ac-
tive research [(84) and references therein]. Although we do expect 
this phenomenon to be also present in aseismic ruptures, to the best 
of our knowledge, there is currently no experimental or observa-
tional evidence suggesting this behavior for slow frictional ruptures. 
Therefore, we choose not to explore the theoretical implications of 
this potential physical factor at this stage.

Numerical methods
All the numerical calculations in this study have been conducted via 
the boundary element–based method described in (23). For the general 
case of noncircular ruptures, we use the fully three- dimensional 
method presented in (23). For the particular case of axisymmetric, 
circular ruptures, we use a more efficient axisymmetric version of 
the method presented in (24).
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