FRANCOIS X. PASSELÈGUE ______ HOME | PUBLICATIONS | CV | PEOPLE | HOPE

PUBLICATIONS SUBMITTED / IN PREPARATION [41] Dublanchet, P., Passelègue, F. X., Chauris, H., Gesret, A., Noël, C. (Submitted). Earthquake nucleation in the laboratory: insights from space-time imaging of quasi-static precursory slip under tri-axial conditions. (link) [40] Passelègue, F., Brantut, N., Chauris, H., Dublanchet, P. (Submitted). Propagation of fluid-driven aseismic slip fronts along crustal faults. (link) [39] Latour, S., Lebihain, M., Bhat, H. S., Twardzik, C., Bletery, Q., Hudnut, K.W., Passelègue, F. (Submitted). Direct Estimation of Earthquake Source Properties from a Single CCTV Camera. (link) ACCEPTED [38] Paglialunga, F., Passelègue, F. X., Ampuero, J.-P., Latour, S., Violay, M. (Submitted to GRL). The Role of Stress Distribution in Seismic Cycle Complexity of a Long Laboratory Fault. (link) [37] Saez, A., Passelègue, F., Lecampion, B. (2025). Maximum size and magnitude of injection-induced slow slip events. Science Advances. (link) [36] Noël, C., Twardzik, C., Dublanchet, P., Passelègue, F. (2025). On the emergence of fault afterslip during laboratory seismic cycle. Earth and Planetary Science Letters. (link) [35] Dublanchet, P., Passelègue, F. X., Chauris, H., Gesret, A., Twardzyk, C., Noël, C. (2024). Kinematic inversion of fault slip during the nucleation of laboratory earthquakes. Journal of Geophysical Research. (link) [34] Latour, S., Passelègue, F., Paglialunga, F., Noël, C., Ampuero, J.-P. (2024). What happens when two ruptures collide? Geophysical Research Letters. (link) [33] Fryer, B., Lebihain, M., Noël, C., Paglialunga, F., Passelègue, F. (2024). The effect of stress barriers on unconventional-singularity-driven frictional rupture. Journal of the Mechanics and Physics of Solids. (link) [32] Paglialunga, F., Passelègue, F. X., Lebihain, M., Violay, M. (2024). Frictional weakening leads to unconventional singularities during laboratory earthquake. Earth and Planetary Science Letters. (link) [31] Paglialunga, F., Passelègue, F., Latour, S., Gounon, A., & Violay, M. (2023). Influence of Viscous Lubricant on Nucleation and Propagation of Frictional Ruptures. Journal of Geophysical Research: Solid Earth, 128(4), e2022JB026090 (link) [30] Fryer, B., Giorgetti, C., Passelègue, F., Momeni, S., Lecampion, B., & Violay, M. (2022). The Influence of Roughness on Experimental Fault Mechanical Behavior and Associated Microseismicity. Journal of Geophysical Research: Solid Earth, 127(8), e2022JB025113 (link) [29] Cornelio, C., Spagnuolo, E., Aretusini, S., Nielsen, S., Passelègue, F., Violay, M., ... & Di Toro, G. (2022). Determination of parameters characteristic of dynamic weakening mechanisms during seismic faulting in cohesive rocks. Journal of Geophysical Research: Solid Earth, 127(7), e2022JB024356. (link) [28] Paglialunga, F., Passelègue, F. X., Brantut, N., Barras, F., Lebihain, M., & Violay, M. (2022). On the scale dependence in the dynamics of frictional rupture: Constant fracture energy versus size-dependent breakdown work. Earth and Planetary Science Letters, 584, 117442. (link) [27] Paglialunga, F., Passelègue, F. X., Acosta, M., & Violay, M. (2021). Origin of the Co‐Seismic Variations of Elastic Properties in the Crust: Insight From the Laboratory. Geophysical Research Letters, 48(12), e2021GL093619. (link) [26] Passelègue, F. X., Tielke, J., Mecklenburgh, J., Violay, M., Deldicque, D., & Di Toro, G. (2021). Experimental Plastic Reactivation of Pseudotachylyte‐Filled Shear Zones. Geophysical Research Letters, 48(5), e2020GL091538. (link) [25] Noël, C., Passelègue, F. X., & Violay, M. (2021). Brittle faulting of ductile rock induced by pore fluid pressure build‐up. Journal of Geophysical Research: Solid Earth, 126(3), e2020JB021331. (link) [24] Almakari, M., Chauris, H., Passelègue, F., Dublanchet, P., & Gesret, A. (2020). Fault’s hydraulic diffusivity enhancement during injection induced fault reactivation: application of pore pressure diffusion inversions to laboratory injection experiments. Geophysical Journal International, 223(3), 2117-2132. (link) [23] Violay, Marie, and Francois Passelegue. "Special Issue on Injection Induced Seismicity: Selected papers from the Mini-Symposium on Induced Seismicity of the 2nd International Symposium on Energy Geotechnics, SEG 2018, at Swiss Institute of Technology at Lausanne, EPFL, September 25-28, 2018." Geomechanics for Energy and the Environment 24 (2020): 100200. (link) [22] Fondriest, M., Mecklenburgh, J., Passelegue, F. X., Artioli, G., Nestola, F., Spagnuolo, E., ... & Di Toro, G. (2020). Pseudotachylyte alteration and the rapid fade of earthquake scars from the geological record. Geophysical Research Letters, 47(22), e2020GL090020. (link) [21] Passelègue, F. X., Almakari, M., Dublanchet, P., Barras, F., Fortin, J., & Violay, M. (2020). Initial effective stress controls the nature of earthquakes. Nature communications, 11(1), 1-8. (link) [20] Aubry, J., Passelègue, F. X., Escartín, J., Gasc, J., Deldicque, D., & Schubnel, A. (2020). Fault stability across the seismogenic zone. Journal of Geophysical Research: Solid Earth, 125(8), e2020JB019670. (link) [19] Cornelio, C., Passelègue, F. X., Spagnuolo, E., Di Toro, G., & Violay, M. (2020). Effect of fluid viscosity on fault reactivation and coseismic weakening. Journal of Geophysical Research: Solid Earth, 125(1), e2019JB018883. (link) [18] Acosta, M., Passelègue, F. X., Schubnel, A., Madariaga, R., & Violay, M. (2019). Can precursory moment release scale with earthquake magnitude? A view from the laboratory. Geophysical Research Letters, 46(22), 12927-12937. (link) [17] Noël, C., Passelègue, F. X., Giorgetti, C., & Violay, M. (2019). Fault reactivation during fluid pressure oscillations: Transition from stable to unstable slip. Journal of Geophysical Research: Solid Earth, 124(11), 10940-10953. (link) [16] Violay, M., Passelègue, F., Spagnuolo, E., Di Toro, G., & Cornelio, C. (2019). Effect of water and rock composition on re-strengthening of cohesive faults during the deceleration phase of seismic slip pulses. Earth and Planetary Science Letters, 522, 55-64. (link) [15] Passelègue, F. X., Aubry, J., Nicolas, A., Fondriest, M., Deldicque, D., Schubnel, A., & Di Toro, G. (2019). From fault creep to slow and fast earthquakes in carbonates. Geology, 47(8), 744-748. (link) [14] Marty, S., Passelègue, F. X., Aubry, J., Bhat, H. S., Schubnel, A., & Madariaga, R. (2019). Origin of high‐frequency radiation during laboratory earthquakes. Geophysical Research Letters, 46(7), 3755-3763. (link) [13] Passelègue, F. X., Brantut, N., & Mitchell, T. M. (2018). Fault reactivation by fluid injection: controls from stress state and injection rate. Geophysical Research Letters, 45(23), 12-837. (link) [12] Aubry, J., Passelègue, F. X., Deldicque, D., Girault, F., Marty, S., Lahfid, A., ... & Schubnel, A. (2018). Frictional heating processes and energy budget during laboratory earthquakes. Geophysical Research Letters, 45(22), 12-274. (link) [11] Passelègue, F. X., Pimienta, L., Faulkner, D., Schubnel, A., Fortin, J., & Guéguen, Y. (2018). Development and recovery of stress‐induced elastic anisotropy during cyclic loading experiment on westerly granite. Geophysical Research Letters, 45(16), 8156-8166. (link) [10] Acosta, M., Passelègue, F. X., Schubnel, A., & Violay, M. (2018). Dynamic weakening during earthquakes controlled by fluid thermodynamics. Nature communications, 9(1), 1-9. (link) [9] Giacomel, P., Spagnuolo, E., Nazzari, M., Marzoli, A., Passelegue, F., Youbi, N., & Di Toro, G. (2018). Frictional instabilities and carbonation of basalts triggered by injection of pressurized H2O‐and CO2‐rich fluids. Geophysical research letters, 45(12), 6032-6041. (link) [8] Passelègue, F. X., Latour, S., Schubnel, A., Nielsen, S., Bhat, H. S., & Madariaga, R. (2017). Influence of fault strength on precursory processes during laboratory earthquakes. Fault zone dynamic processes: Evolution of fault properties during seismic rupture, 229-242. (link) [7] Passelègue, F. X., Spagnuolo, E., Violay, M., Nielsen, S., Di Toro, G., & Schubnel, A. (2016). Frictional evolution, acoustic emissions activity, and off‐fault damage in simulated faults sheared at seismic slip rates. Journal of Geophysical Research: Solid Earth, 121(10), 7490-7513. (link) [6] Brantut, N., Passelègue, F. X., Deldicque, D., Rouzaud, J. N., & Schubnel, A. (2016). Dynamic weakening and amorphization in serpentinite during laboratory earthquakes. Geology, 44(8), 607-610. (link) [5] Passelègue, F. X., Schubnel, A., Nielsen, S., Bhat, H. S., Deldicque, D., & Madariaga, R. (2016). Dynamic rupture processes inferred from laboratory microearthquakes. Journal of Geophysical Research: Solid Earth, 121(6), 4343-4365. (link) [4] Nicolas, A., Girault, F., Schubnel, A., Pili, É., Passelègue, F., Fortin, J., & Deldicque, D. (2014). Radon emanation from brittle fracturing in granites under upper crustal conditions. Geophysical Research Letters, 41(15), 5436-5443. (link) [3] Passelègue, F. X., Fabbri, O., Dubois, M., & Ventalon, S. (2014). Fluid overpressure along an Oligocene out-of-sequence thrust in the Shimanto Belt, SW Japan. Journal of Asian Earth Sciences, 86, 12-24. (link) [2] Passelègue, F. X., Goldsby, D. L., & Fabbri, O. (2014). The influence of ambient fault temperature on flash‐heating phenomena. Geophysical Research Letters, 41(3), 828-835. (link) [1] Passelègue, F. X., Schubnel, A., Nielsen, S., Bhat, H. S., & Madariaga, R. (2013). From sub-Rayleigh to supershear ruptures during stick-slip experiments on crustal rocks. Science, 340(6137), 1208-1211. (link)